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ABSTRACT In the last few decades, beginning with Appel and Haken’s
proof of the four-color theorem, philosophers have been interested in the
epistemological status of computer-assisted proofs. There are two
opposing views. Critics point to mathematicians who criticize Appel and
Haken’s proofs as a verification that falls short of a real proof (e.g. Rota,
1997). They further argue that computer-assisted proofs are epistemically
lacking because they cannot be surveyed or involve a specific risk of error
(e.g. Tymoczko, 1979; Resnik, 1999). On the other hand, supporters point
out that Appel and Haken’s proof was accepted by those mathematicians
who were actively working on the four-color theorem (MacKenzie, 1999).
Furthermore, they try to refute the epistemic arguments of the critics (e.g.
McEvoy, 2022). The result is a stalemate between critics and supporters. In
this paper, I argue that this stalemate can be resolved by empirical data. I
report the results of an analysis of all 2.6 million preprints uploaded to the
arXiv between 1986 and 2024, conducted to find out exactly how many
computer-assisted proofs are published, and how their number changes
over time. The results show that there is a small but not insignificant
number of preprints reporting on computer-assisted proofs. More
importantly, their number has been increasing at an accelerating rate. This
suggests that the epistemic concerns of the critics may be somewhat
exaggerated.

1. Introduction
In the last few decades there has been a continuous interest in computer-

assisted proofs. Beginning with Appel and Haken’s breakthrough proof of
the four-color theorem (Appel & Haken, 1977a; Appel et al., 1977) and

1 Many thanks to the participants of the 2024 Masterclass in the Philosophy of
Mathematical Practice at Vrije Universiteit Brussel and the Philosophy Master’s and
Doctoral Students Seminar at Heinrich Heine University, as well as to Deborah Kant and
to two anonymous reviewers for their helpful comments on earlier versions of this paper.
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what is taken to be a mixed reception in parts of the mathematical
community, philosophers have been interested in two related questions:
Are computer assisted-proofs genuine proofs, or do they merely verify
their conclusions (e.g. Rota, 1997)? Moreover, are there any implications
for the epistemology of mathematics, i.c. is the justification provided by
computer-assisted proofs a posteriori because it is partly established by
external means (e.g. Tymoczko, 1979)?

Answers tend to fall into one of two opposing camps, critics and supporters.
Critics point to the lukewarm, at best, reception of computer-assisted
proofs by the mathematical community. In their view, mathematicians
who oppose computer-assisted proofs correctly recognize that these proofs
are epistemologically lacking: they do not provide the kind of secure and
indubitable justification that is normally associated with mathematical
proofs (i.e. computer-assisted proofs are a posteriori). On the other hand,
supporters argue that the critics” epistemological arguments are flawed in
that they fail to distinguish between computer-assisted and ordinary, i.c.
non-computer-assisted, proofs (i.e. computer-assisted proofs are 2 priors it
ordinary proofs are).2 Moreover, sociohistorical treatments of the Appel
and Haken proof and its context may be taken to indicate that the proof
was accepted by relevant parts of the mathematical community, namely by
those mathematicians working on the four-color theorem (MacKenzie,
1999). Thus, while critics build on what they believe to be a negative
response from the mathematical community, supporters can try to
undermine that foundation by pointing to other voices within the

community.

In this chapter, I'll argue that some progress can be made by taking an
empirically informed view at the issue. Critics and supporters (though the
latter perhaps to a lesser extent) rely on claims about mathematical
practice, namely about what mathematicians think about computer-
assisted proofs. These claims are often supported by pointing to the
mathematical community. But both critics and supporters can find
mathematicians whose statements seem to support their views. Who

2 Note that there are also critics who avoid expressing their criticism in terms of the «
priori/a posteriori distinction. I assume that such criticism is either comstructive or
destructive. Constructive criticism does not object to computer-assisted proofs, but points
out flaws that could be improved (e.g. Thurston, 1994, p. 162). Destructive criticism
objects to the usage of computer-assisted proofs altogether (e.g. Rota, 1997, p. 186). I am
taking it that destructive criticism, ultimately, does make for an epistemic distinction
between ordinary and computer-assisted proofs that can be voiced in terms of the 4
priori/a posteriori distinction.
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should we trust? What do mathematicians really think about computer-
assisted proofs? One answer, I'll argue, can be found through empirical
research. I'll report on a bibliometric study that examines how common
computer-assisted proofs are and whether their number changes over time
by analyzing the 2.6 million preprints submitted to the arXiv between
1986 and 2024. The results address the above question indirectly: the
number of computer-assisted proofs, as well as a possible decrease or
increase in their number over time, is certainly indicative of the
community’s attitude towards them. In fact, my results suggest that some
of the critics’ claims may have been exaggerated.

In the next section, I'll give a more detailed overview of the arguments put
forward by both, critics and supporters, as well as their respective views of
the mathematical community’s reception. Section 3 puts these views to the
empirical test. I'll outline my approach and report the results. Finally,
section 4 discusses the implications of these results in light of the
arguments of both critics and supporters.

2. Critics vs. supporters

In this section, I'll examine the arguments offered by both critics and
supporters. In particular, it will be interesting to see their respective
commitments about what mathematicians think about computer-assisted
proofs. While critics emphasize a negative attitude, supporters point out
that an important group of experts has no objection to computer-assisted
proofs. Historically, the debate is anchored in Appel and Haken’s proof of
the four-color theorem so I’ll start there.

The four-color theorem states, in plain terms, that any planar map can be
colored with four colors such that countries with a common boundary
segment are given different colors. This can be translated to graph theory.
Each country is represented by a vertex, and boundary segments between
two countries are represented as connections between the corresponding

vertices. So:
4CT  Every plane graph has a 4-coloring.

The conjecture has been discussed since the middle of the 19th century, but
a correct proof was not found until 1977. While this proof, by Appel and
Haken, relies on a number of technical concepts that have been established
through ordinary mathematical work (i.e. without the use of computers),
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the Appel and Haken proof relies on a computer to do some parts that are
practically impossible for a human mathematician to do.3

What did Appel and Haken do? A detailed account would be out of place
here, so I'll just give a brief, non-technical overview.* The overall strategy is
to prove that there is no counterexample to 4CT, i.e., that there is no plane
graph that has a coloring of five or more. To do this, the proof relies on
two technical concepts: unavoidable sets and reducible configurations. An
unavoidable set is a set of sub-graphs such that every possible plane graph
must include at least one of its members somewhere. A reducible
configuration is a sub-graph which, when found within a larger graph,
renders the graph four-colorable due to certain structural properties. While
there are many unavoidable sets and many reducible configurations, to
prove 4CT; it suffices to show that there is a single unavoidable set that
consists entirely of reducible configurations. This proves that there is no
plane graph with a coloring equal to or greater than five.

Unavoidable sets can be found by a (complex) algorithm. The algorithm
has been implemented and run computationally, but the published version
of the proof contains an ordinary proof of the algorithm’s correctness
(Appel & Haken, 1977a).5 Thus the correctness of the algorithm “can be
checked by hand in a couple of months” (Appel & Haken, 1977b, p. 121).
Reducibility is arguably more problematic. Checking whether a sub-graph
is reducible ultimately amounts to a brute-force check of its individual
features. While this is already time-consuming for smaller graphs, the
graphs of the proof can have an outer ring size of 15 vertices — i.e. they are
quite large — and, given the sheer number of graphs that need to be
checked, “it would be virtually impossible to verify the reduction
computations” (Appel & Haken, 1977b, p. 121) manually. Accordingly,
the check for reducibility is implemented computationally.

3 It is worth noting there were a number of unsuccessful attempts before the proof was
found in 1977. The most famous of these, by Alfred Kempe in 1880, was not discovered
to be faulty until 11 years later. A similar event took place shortly before Appel and
Haken’s proof, when Yoshio Shimamoto’s proof attempt was refuted. Overall, these
developments seem to have influenced a skeptical attitude towards proofs of the 4CT, and
even towards the 4CT itself.

4 For a detailed, but accessible outline of the proof, see Appel and Haken (1977b). The
canonical source is Appel and Haken (1989), for the socio-historical context see
MacKenzie (1999).

5 This is the so-called ‘discharging’ algorithm, originally due to Heesch (1969).
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The result of this procedure is an unavoidable set of 1.936 reducible
configurations (the number could later be reduced to 1.405 by eliminating
redundancies and simplifying of the argument, cf. Appel & Haken, 1989)
and thus a proof of the 4CT.

To conclude the historical exposition, it is worth mentioning that
Robertson et al. (1997) and Gonthier (2008) have published a new proof
of the 4CT. This new proof is based on the same concepts — it still searches
for an unavoidable set of reducible configurations — and is still computer-
assisted, but it improves on the Appel and Haken proof by greatly
simplifying the algorithm used to identify unavoidable sets. Moreover, the
computational parts were implemented in Coq, a standardized proof
assistant, whereas Appel, Haken, and their collaborator John Koch had to
implement these parts in assembly language and run them on bare metal.6

What are the philosophically interesting aspects of this story? Critics begin
by citing the “mixed” (Wilson, 2014, p. 157) reaction to the proof, with
mathematicians expressing discomfort with the reliance on a computer to
perform the reducibility check. This is acknowledged to some extent even

by Appel and Haken:

Many mathematicians ... resist treating the computer as a standard
mathematical tool. They feel that an argument is weak when all or part
of it cannot be reviewed by hand computation. From this point of
view the verification of results such as ours by independent computer
programs is not as convincing as the checking of proofs by hand.
(Appel & Haken, 1977b, p. 121)

To give a few examples, Appel and Haken’s proof has been criticized (by
fellow mathematicians!) for not giving “a satisfactory explanation why the
theorem is true” (Stewart, 1981, p. 304), partly because the computational
parts are impossible to grasp. What Appel and Haken have archived is at
best “a computer verification of the four color conjecture” (Rota, 1997, p.
186, my empbhasis). The proof is not regarded as definitive and further
verifications are needed. At worst, it amounts to “computer shenanigans
[that] leave us intellectually unfulfilled.” (Cohen, 1991, p. 328) The most
telling example might be the following story of Haken, who recalls that
when he visited another university to give a talk about Appel and his

¢ Assembly language is a low-level language in which each statement corresponds directly
to a machine instruction. It requires manual management of low-level operations (e.g.
memory addressing and instruction sequencing) and provides minimal abstraction and
error checking. In contrast, Coq and other modern proof assistants use high-level
languages that abstract and manage many low-level operations internally.
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proof, a senior mathematician from that university actively tried to
prevent him from engaging with local graduate students, apparently to
protect them from the bad influence of his computational methodology
(MacKenzie, 1995, p. 41).

But the critics do not stop there. The next step is to turn some of these
points into an epistemic argument, i.e. to argue that computer-assisted
proofs differ in an epistemically relevant way from their non-computer-
assisted counterparts. The idea seems to be that those mathematicians who
object to the use of computer-assisted proofs are actually responding to an
epistemic difference between ordinary proofs and their computational
counterparts.” Often, the aim is to argue that computer-assisted proofs
provide an a posteriort justification for their conclusions, whereas ordinary
proof might be expected to provide an & priori justification for their

conclusions.8

To spell out the difference precisely, Tymoczko (1979, pp. 59-60) has
coined the notion of surveyability:

S A proof is surveyable if and only if it can be completely looked
over, reviewed, and verified by a rational agent.

Surveyability is of interest because it explains why a mathematician who
reads a proof becomes convinced of the correctness of the conclusion. The
proof leaves no room for doubt, i.e., if a mathematician is able to survey
the proof and finds it to be valid, she must also accept its conclusion.
Nothing about how the proof came about, or how it was found, is
necessary to accept its conclusion.” The next step is to argue that Appel
and Haken’s proof is not surveyable because the reducibility part cannot

be checked by hand (Tymoczko, 1979, p. 70).

7 That is, it is assumed that the mathematical communities’ reactions provide strong
evidence for the epistemic quality of computer-assisted proofs. I will return to this point
below.

8 To complicate matters, Tymoczko (1979) and Kitcher (1984) claim that the
justifications provided by ordinary proofs are also a posteriori. For them, the case of
computer-assisted proofs is of interest because it brings to light what an otherwise
overlooked problem. For the purposes of this paper, however, it is sufficient to focus on
computer-assisted proofs.

2 Recently it has been suggested to replace ‘surveyability’ with the more general notion of
‘transferability’, where a proof is transferable if and only if the sequence of propositions
itself constitutes the proof (De Toffoli, 2021, pp. 9-11). While this may be a fruitful idea,
for the context of this chapter the already established notion of surveyability will suffice.
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The (un)surveyability has direct implications for the a priori/a posterior:
distinction. Some authors argue that unsurveyable proofs do not
constitute 4 priort justifications. Traditionally, # priors justifications have
been characterized as indefeasible. This supposed indefeasibility is
incompatible with justifications involving perception or recollections from
memory: both are fallible and therefore defeasible (De Toffoli, 2021,
p. 10). When applied to mathematical proofs, the consequences are clear.
If a proof is surveyable, a skilled mathematician can easily follow each of its
deductive steps and thereby gain an indefeasible justification for its
conclusion. But if a proof cannot be fully surveyed, then any justification a
mathematician might gain from the proof will be defeasible, because the
mathematician cannot follow each of the proof’s deductive steps, but has
to accept the computer’s output at some point. In counterfactual
scenarios, contrary evidence — even empirical evidence — could undermine
whatever justification the mathematician gained from the computer-
assisted proof (Kitcher, 1984, p. 46).10

A second argument used by critics is also based on the lack of surveyability.
A mathematician who reads the proof and accepts 4CT on the basis of her
reading cannot in principle rule out that the computational parts of the
proof contain programming errors or hardware failures (Resnik, 1999,
pp. 150-153).11 If the mathematician still believes that 4CT is correct, her
belief is based not only on what she has read, but also on the (empirical)
assumption that there were no programming errors or hardware failures,
i.e. on a very general assumption about computers, perhaps to the extent
that if such failures had occurred, they would not have produced the
output necessary for the proof. The important point here is that this
assumption goes beyond what the proof itself offers, and, so the critics
argue, an analogous assumption is not needed in ordinary proofs. These
can be surveyed, and therefore verified, by a (skilled) agent without having
to think about how the proof was produced. Again, the implications for
the a priori/a posteriors distinction are obvious. If accepting the result of a
computer-assisted proof involves an empirical claim about the reliability of

10 The same argument has been made against ordinary proofs which are very long
(Kitcher, 1984, pp. 40-46). Within the framework outlined above, a mathematician
conducting a long proof must memorize and later recall immediate steps. Since our
memory is fallible, the justification of the proof is a posteriori. Be that as it may, to
criticize the argument it suffices to show that 2 priori justifications are not indefeasible. I
will return to this point below.

11 Appel and Haken’s proof was thought to contain such errors, although none could be
found (MacKenzie, 1995, p. 42).
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computers, an agent’s belief in the conclusion of the proof can hardly be
assumed to be justified 2 priori.

Supporters of computer-assisted proofs who wish to respond to these
challenges seem to have two strategies at their disposal. One is to respond
to the claim that the reception of computer-assisted proofs by the
mathematical community has been overwhelmingly negative. A second
strategy is to refute the epistemological challenges. I'll now discuss both
strategies.

Modern mathematics is a highly specialized field. Mathematicians working
in one sub-field often have great difficulty following the work of their
colleagues working in another sub-field, let alone those working in another
field (Thurston, 1994, p. 3). With this in mind, one may wonder how
much weight should be given to the statements quoted by the critics. Most
of the mathematicians who were quoted, although established scholars,
have not been involved in recent graph theory or in the developments that
led to Appel and Haken’s proof. One may wonder what the
mathematicians who have been involved in these communities think about
computer-assisted proofs, and about Appel and Haken’s proof in

particular.

W. T. Tutte, a leading graph theorist who had been critical of earlier
computational attempts to prove the 4CT, is known to have publicly
touted Appel and Haken’s proof as correct (Kolata, 1976). In addition, the
core group of mathematicians who were actively working on the 4CT
using methods similar to those of Appel and Haken — namely Frank
Allaire, E.R. Swart, and Frank Bernhart — reacted quite enthusiastically to
what they believed to be a successful proof:

I can only tell you that we were unanimous in our view that [Appel
and Haken had] done it. Unanimous. (Sward in an interview with A.].
Dale, quoted after MacKenzie, 1995, p. 42; cf. also Swart, 1980)

In light of these voices, supporters can argue that the critic’s assessment of
the mathematical community’s stance is biased. While some
mathematicians have objected to computer-assisted proofs, and in
particular to the proof of the 4CT, the relevant experts have not. On the
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contrary, they have praised Appel and Haken’s methodology and refuted
the criticism of their colleagues (e.g. in Swart, 1980).12

The second strategy that the supporters can resort to is to respond to the
epistemological arguments of the critics. More specifically, supporters
argue that the notion of surveyability is epistemically negligible. McEvoy
(2007) has argued that the very same proof can be represented difterently,
e.g. by using different notations. While one representation may not be
surveyable, another representation of the very same proof may be. Thus
one can turn an unsurveyable proof into a surveyable one by translating it
from one representation into another. Given this possibility, McEvoy
argues, surveyability does not seem to have any effect on the 4 priori/a
posteriort distinction, contrary to what the critics claim. While a change in
representation may transform a non-surveyable proof into a surveyable
one, the change is unlikely to transform an a posteriori proof into an a
priori one. This distinction does concern the proof and its justification,
not its presentation. So the only viable explanation is that the proof (or
rather the justification it provides) was a priors all along.13

Another response to the challenge focuses on the alleged connection
between the possibility of doubt and the a priori/a posterior: distinction.
Kitcher (1984), voicing the critical position, argued that the justification
provided by computer-assisted proofs is defeasible because the proofs
cannot be fully surveyed. Consequently, if 2 priori justifications are said to
be indefeasible, the justification provided by computer-assisted proofs is 2
posteriori. However, responses from the epistemological literature
challenge this conclusion. It has been argued that z priori justifications are
in fact defeasible and can be undermined by both non-empirical and
empirical evidence (Casullo, 1988).

A similar treatment can be given to Resnik’s (1999, pp. 150-153) concern
about implicit empirical assumptions. While Resnik is right about the
presence of such assumptions, the same assumptions are also present in the
case of ordinary proofs: “flaws in the computer implementation ... are
nothing other than errors of logic, no different ... in proofs that have
nothing to do with computer” (Swart, 1980, p. 703). While accepting the

12 Historically, it is interesting to note that other mathematicians, including Allaire,
Steward and Bernard, were working on their own computer-assisted proof of the 4CT
(Wilson, 2014, pp. 150-151). Heesch had (unsuccessfully) attempted a computer-assisted
proof before. In this sense, the option of attempting a computer-assisted proof may have
been on the table for some time before Appel and Haken succeeded.

13 See McEvoy (2022) for further responses to the critics.
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result of a computer-assisted proof may involve some kind of trust in the
inner workings of the computer, in practice a similar kind of trust is
invoked when accepting the result of an ordinary proof (of a certain
complexity and length).14 In any case, it is argued that this aspect has no
implications on the a priori/a posteriori distinction.

Where do we stand? So far I have painted a rather mixed picture. On the
one hand, critics hope to argue that computer-assisted proofs are
epistemically lacking, i.e. that they provide 4 posteriori justification where
ordinary proofs might be expected to provide a priori justification. The
argument is based on the notion of surveyability. It is argued that
computer-assisted proofs are not surveyable, whereas ordinary proofs are.
Supporters, in turn, argue against this verdict. While they agree that
computer-assisted proofs may not be perfectly surveyable, they argue that
this has no implications for their epistemological status.

Both positions have their roots in mathematical practice. Critics cite
mathematicians who actively oppose the use of computer-assisted proofs
to argue that there is something fundamentally wrong with these proofs.
To explain what exactly is wrong, they appeal to the a priori/a posteriori
distinction. In contrast, supporters cite mathematicians who are more
open to computational methods. They argue that, contrary to the critics’
portrayal, mathematicians are not universally opposed to computational
methods: while some reject their use, others embrace them. While this
divergence may still call for an explanation, it challenges the idea that there
is something fundamentally wrong with computer-assisted proofs.

Both critics and supporters presuppose that the mathematical community
acceptance of a proof or method is a good indicator of its epistemically
quality. This presupposed epistemic link can be spelled out as follows:

EL The mathematical community’s acceptance or rejection of a
method or proof provides strong evidence of its epistemic quality
— either positively or negatively.

While this assumption is common at least in the epistemological strand of
the philosophy of mathematical practice (Carter, 2019, pp. 16-22), the
appeal to (EL) is not entirely unproblematic. Community consensus may
also reflect sociological or cultural trends, rather than purely

epistemological considerations. Also, different parts of the community

14 Swart adds that, in comparison, he trusts the parts of Appel and Haken’s proof that
were done by a computer more than the parts that were done by hand.
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may hold different views. When the supporter argues against the critic that
relevant parts of the mathematical community have accepted Appel and
Haken’s proof, she is pointing out that the critic has mistakenly appealed
to (EL), i.e. the critic mistakenly assumes that the whole community
objects to Appel and Haken’s proof, whereas only some parts of the
community have objected. However, given that critics and supporters
share their commitment to (EL), it seems unproblematic to adopt it for

the present discussion. s

This leaves us at a stalemate: if critics rely on those mathematicians who
oppose computational methods and supporters rely on those who
embrace them, who is correct? What do mathematicians really think about
computer-assisted proofs? And what is their epistemological status? In the
next section, I argue that this question ultimately requires empirical

investigation.

3. Investigating the issue empirically

In this section, I'll argue that both critics and supporters not only use
claims about the mathematical community’s reception of computer-
assisted proofs to support their respective views, but also make implicit
assumptions about how the mathematical community would be expected
to behave or think if their respective views were correct. And these
assumptions can (and arguably should, cf. Aberdein & Inglis, 2019) be
tested empirically. Below, T'll describe a methodological approach to
testing these assumptions by analyzing preprints submitted to the arXiv,
and I'll report the results. But first, let me make the implicit assumptions
explicit.

The critic points to the statements of mathematicians who react negatively
to computer-assisted proofs to support her epistemological points, i.e. she
argues that the mathematicians’ discomfort is strong evidence that
something is epistemically wrong with computer-assisted proofs (i.e. she
commits herself to (EL) as outlined above). Next, the critic points to the 2

priori/a posteriori distinction to answer what is epistemically wrong with

15 Note that this does not imply that any critical or supporting position must be based on
(EL). For instance, a critic might argue that computer-assisted proofs are epistemically
flawed based on purely epistemic reasons, irrespective of the community’s stance.
However, as far as I have reviewed the existing literature above, this is not how the debate
has unfolded. Critics begin with observations about opposition to computer-assisted
proofs within the mathematical community and infer epistemological consequences from
there.
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computer-assisted proofs. While the critic provides some evidence for the
starting claim by citing mathematicians who have reacted negatively, the
critic is nevertheless committed to the broader claim that the mathematical
community as a whole reacts negatively. Only this broader claim can be
used to invoke (EL). And this broader claim can be tested empirically.

One metric to track acceptance or rejection is the number of computer-
assisted proofs, or rather the number of papers including computer-
assisted proofs, that are published. If computer-assisted proofs are not
accepted by the mathematical community, one would expect that, apart
from perhaps a few mavericks, mathematicians would not want to write
and publish computer-assisted proofs. Thus, the critic is committed to the
following, arguably rather broad, estimation claim:

C1 Computer-assisted proofs are unpopular and rarely found within
mathematical practice.

More specifically, it might be interesting to consider whether popularity is
expected to change over time. Appel and Haken may have been pioneers in
their field, but at the time of their work, computer-assisted proofs were
not exactly popular.l¢ Since then, however, mathematicians may have
become more accustomed to computational methods. Appel and Haken
speculate that their proof faced opposition, particularly from those
mathematicians “educated before the development of high-speed
computers” (Appel & Haken, 1977b, p. 121). With the huge advances
made in the development of (not only) high-speed computers in the last 50
years, and the increasing popularity of informatics and computer science
among mathematics students, can we expect that the number of

computer-assisted proofs will increase?

The critic, I think, would give a negative answer. If computer-assisted
proofs are not accepted (for epistemic reasons, as the critic will want to
claim), and if mathematicians therefore shy away from engaging with them
(as (EL) suggests), then the critic would expect that this will zor change.
The critic would thus be committed to the following relational claim
(considering the relation between different points in time and the number
of computer-assisted proofs):

C2 Over time, the number of computer-assisted proofs remains (more
or less) unchanged.

16 To my mind, Appel and Haken’s proof was the first computer-assisted proof
published.
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Together with C1, C2 implies that the number of computer-assisted

proofs is and remains low.

Let us now look at the supporter’s view of the matter. In the supporter’s
view, the mathematical community as 2 whole is not reacting negatively
towards computer-assisted proof. Although some mathematicians object
to their usage, they are the exception rather than the norm. Most
mathematicians may be indifferent, while some may even endorse
computational methods. In any case, on the supporter’s view, there is not
enough evidence to invoke (EL) to argue that there is a fundamental
epistemic problem.l” Computer-assisted proofs may not be perfect, but
the supporter holds that there is nothing epistemically wrong with them,
simply because there is no universal rejection. Accordingly, the supporter
might express the following expectation:

S1 Computer-assisted proofs are found in mathematical practice.

Note that the supporter does not have to claim that computer-assisted
proofs are particularly popular, or that the number of proofs found
exceeds some (fairly high) threshold. What might be expected is that their
number is greater than the critic would expect, but there is no need (or
way) to quantify this assumption. Perhaps it is fair to say that, on the
supporter’s view, computational methods are expected to be endorsed by
wider parts of the mathematical community, and not just by a few

mavericks.

What is the supporter’s corollary to C2? Given the tremendous advances
in the development (and widespread availability) of fast computers and the
increasing popularity of computer science, the supporter might adopt the
following:

S2 Over time, the number of computer-assisted proofs is rising.

We now have four empirical claims about mathematical practice, namely
about the number of computer-assisted proofs that can be found. These
claims follow from the respective philosophical positions of critics and
supporters, and their reliance on (EL). When these claims are tested
empirically, the corresponding philosophical position is also tested.®

17 Needless to say, there is not enough evidence to invoke (EL) to argue that computer-
assisted proofs are epistemically good, either.

18 Note that C2 and S2 are incompatible. As the results will show, the crucial finding
concerns how the number of computer-assisted proofs changes over time, one could
simplify things and focus exclusively on C2.
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Next, I'll describe a method for doing just that.

3.1 Method

From the way claims C1, C2, S1, and S2 are worded, it should be obvious
that I am interested in the number of computer-assisted proofs and how
this number changes over time. One method of generating the relevant
data is bibliometric analysis.!? The plan is as follows: first, one needs a way
to access a sufficiently large bibliographic dataset that is representative of
the mathematical practice and the community one wants to study. Then
one needs to devise a way to extract computer-assisted proofs from what is
available in the dataset. Finally, one counts the number of computer-
assisted proofs and checks if and how their number has changed over time.
The results can be compared with the expectations set out in C1, C2, S1,
and S2. I'll now describe each of these steps.

Given the need for a representative dataset, it is common practice to rely
on the arXiv (e.g. in Mejfa-Ramos et al., 2019 and Tanswell & Inglis,
2024). The arXiv is a repository for preprints of academic articles in fields
such as mathematics, computer science, physics, quantitative biology,
statistics, electrical engineering and systems science. It is the primary
repositories that mathematicians around the world use to share their work
(McKinney, 2011). It is therefore reasonable to assume that by using data
from the arXiv, one will get a dataset that is representative of current
mathematical practice and community. Another advantage of the arXiv is
that it is open access. Preprints and their metadata can be freely viewed and
downloaded without technical or legal hurdles. For the purposes of this
chapter, I have used the so-called ‘arXiv dataset’, which contains the
metadata of all 2.6 million articles currently on the arXiv and is available
for download on Kaggle (arXiv.org, 2025).

Having a representative dataset, the next step is to extract the preprints
that contain computer-assisted proofs. To do this, I have devised a list of
keywords, each of which is assumed to be indicative of a computer-assisted
proof. The idea is that any preprint that contains at least one of these
keywords is likely to report on a computer-assisted proof. In technical
jargon, this amounts to a Boolean information retrieval without ranking
(Manning et al., 2008, pp. 1-17). The arXiv dataset forms the collection
(or corpus) from which information is retrieved, while the metadata of

19 To be clear, bibliometrics is certainly not the only way, but only one of many empirical
ways to study the question. In fact, it may by advisable to use different methods to study
the same question (Léwe & Kerkhove, 2019).
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each preprint are the (so-called) documents within the corpus. The
Boolean condition consists of the list of keywords given below.

Keywords

ACL2, Agda, Coq, HOL, Idris, Isabelle, Lean, Metamath, Mizar, computer-assisted,

computer assisted

The keywords include the terms ‘computer-assisted’ and ‘computer
assisted’, the latter to catch a common typo. It also includes the names of
all proof assistants listed in the Wikipedia article on proof assistants,
provided that there is at least one article in the arXiv, reporting on a

computer-assisted proof that includes the name.20

Next, all entries in the dataset were matched against the list of keywords.
For practical reasons, matching was limited to both titles and abstracts. It
is assumed that if a paper contains a computer-assisted proof, rather than
an ordinary one, this information will be given in either the title or the
abstract. Initial results confirm that this tactical assumption is feasible.

It is a unique feature of the arXiv that both titles and abstracts often
contain LaleX code. Previous projects built around data extracted from
the arXiv have devised ways to strip the LaleX code in order to analyze the
underlying text (Mejfa-Ramos et al., 2019; Tanswell & Inglis, 2024). For
this project, however, it quickly became clear that such processing was not
necessary. Initial results showed that the keywords, if present, did not
interfere with the LaleX code. For the same reason, it was not necessary to
lemmatize the text (i.e., reduce words to their base or dictionary form to
facilitate corpus-based analysis), although lemmatization would probably
be necessary if the title and abstract of matching papers were analyzed
further. However, it was necessary to match the keywords in a case-
insensitive-manner, i.e. an article was counted as a match if its title or
abstract included one of the keywords, regardless of the case of the word.
Initial results confirmed that this works, except for ‘HOL’ and ‘Lean’,
both of which result in false positives when matched case-insensitively.2!
However, these could be remedied by case-sensitive matching of these two

words.

20 This was confirmed by entering the term in the arXiv online search and manually
checking the resulting preprints.

21 The term ‘lean’ is often used in its ordinary English sense, rather than referring to the
proof assistant of the same name. ‘HOL’ is sometimes used to name a function within
mathematical formulae.
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Matching and statistical computations were performed using R (version
4.4.2; R, 2024), the code is available on GitHub.22 Let me now report the
results.

3.2 Results

The dataset contains 2.638.713 preprints submitted between 1986 and
2024. (Preprints newer than 2024 were removed before conducting the
analysis.) A total of 2.652 matched the condition, i.e. they were classified
as reporting on computer-assisted proofs because their title or abstract
contained at least one of the keywords (0.1%).

The next step was to see if the number of matches per year changed. It was
found that until the year 1999 there were almost no matches, but then the
number of matches increased relatively quickly. In the year 2000 there

Matches by year
Number of matching preprints on the ArXiv from 1986 to 2024

No. of matches
w
(42
o

w
o
o

250

200

150

100

50

1985 1990 1995 2000 2005 2010 2015 2020 2025

Year of submission

Fig. 1 Preprints matching at least one of the keywords and uploaded between 1986 and
2024. Each preprint is counted exactly once.

were 8 matches, while in the year 2024 there were 348 matches. Figure 1
shows the number of matches per year, the details are listed in Table 1 in

the appendix.

In order to estimate how the number of matches grows over the years, a

quadratic regression analysis was carried out, ie. it was investigated

22 https://github.com/paulHasselkuss/computer-assisted-proofs-arxiv
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whether the growth rate itself changes over time. The model was
statistically significant, /{2,35)=542.1, p<.001, and explained a significant
proportion of the variance in the number of matches, R?=.967 (adjusted
R2=.967). The first degree polynomial term was a significant predictor,
b=510.59, SE=17.98, 1(35)=28.4, p<.001. The second degree polynomial
term also significantly predicted the number of matches, 6=299.60,
SE=17.98, 1(35)=16.66, p<.001. This suggests that the number of matches

is not just increasing steadily, but at an accelerating rate.

If we look at the number of preprints submitted to the arXiv per year, we
can see that the number of preprints also seems to be increasing at an
accelerating rate (see Table 1 in the appendix). Thus, it may be natural to
assume that the increase in matches is merely due to the increase in the
number of preprints submitted, i.e. while the absolute number of matches
increases over the years, the proportion of matches relative to the number

of preprints submitted may remain unchanged.

A logistic regression analysis was performed to access the relationship
between year and the proportion of matches. The model was statistically
significant, y2(1)=599.83, p<.001, and showed a strong relationship
between the year and the likelihood of a match. Year was a significant
positive predictor of matches, 4=0.076, SE=0.0035, 2=21.94, p<.001. This
indicates that the probability of a match zncreases by approximately 7.9%
with each passing year, i.e. the increase in matches exceeds the increase in

preprints submitted (contrary to the assumption outlined above).

So far, I have reported the results of looking at papers from all fields that
can be submitted to the arXiv. This includes academic fields that are
relevant to the philosophical question (such as mathematics and computer
science), but also fields that are not (such as astrophysics or nonlinear
science). To make the results more precise, in the next step I looked only at
preprints that were assigned to relevant categories. However, this is not
entirely unproblematic, as a single preprint is often assigned to several
categories, i.e. a unique preprint can be assigned to both mathematics and
astrophysics. Thus, preprints have to be counted once for each category to
which they are assigned, and the resulting counts cannot be compared
with the counts of the preprints reported above.

Looking at the number of matches per category, most matches are found
in computer science (2.145 matches, 0.3% of 707.583 preprints within the
category), followed by mathematics (695 matches, 0.1% of 675.005
preprints), and electrical engineering and systems science (170 matches,
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0.18% of 97.045 preprints). Matches in the remaining categories sum to
271 (0.01% of 1.974.215 preprints). Figure 2 shows the number of
matches per category and year, while details are given in Table 2 in the

appendix.

Matches by category and year
Number of matching preprints on the ArXiv from 1986 to 2024
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Fig. 2 Preprints matching at least one of the keywords and uploaded between 1986 and
2024, listed by category. As a unique preprint can have several categories, a unique

preprint may be counted for several categories.

The categories mathematics and computer science were subjected to
further scrutiny. For mathematics, a quadratic regression analysis was
performed to estimate how the number of matches within the category
increases over the years. The model was statistically significant,
F2,33)=253.7, p<.001, and explained a significant proportion of the
variance in the number of matches, R?=.939 (adjusted R?=.935). The
analysis revealed a significant positive linear effect of year on the number
of matches, 5=134.26, SE=6.85, #(33)=19.6, p<.001, and a significant
positive quadratic effect, 6=76.03, SE=6.85, #33)=11.10, p<.001. This
indicates that the number of matches within the mathematics category

increased at an accelerating rate over time.

A logistic regression analysis was performed to investigate whether the
increase in matches exceeded the increase in preprints submitted within
the category. The model was statistically significant, y?(1)=144.14, p<.001,
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indicating that the year is a strong predictor of the proportion of matches.
The analysis revealed a significant positive effect of year on the odds of a
match occurring, 6=0.084, SE=0.008, 2=11.0, p<.001. The results suggest
that as the year increases, the probability of a match within mathematics
increases by approximately 8.7% per year, ie. the increase in matches
exceeds the increase in preprints submitted.

For computer science, a quadratic regression analysis was performed to
estimate how the number of matches within the category increases. The
model was statistically significant, /{2,32)=633.4, p<.001, and explained a
significant proportion of the variance in the number of matches, R?=.975
(adjusted R?=.97). The analysis revealed a significant positive linear effect
of year on the number of matches, $=423.0, SE=13.91, #(32)=30.91,
p<.001, and a significant positive quadratic effect, =245.56, SE=13.91,
#(32)=17.65, p<.001. These results suggest that the number of matches
within the category of computer science has increased at an accelerating

rate over time.

A logistic regression analysis was performed to study whether this effect
exceeded the increase in submissions within the category. The model was
statistically significant, y2(1)=79.18, p<.001, indicating that year was a
significant predictor of the proportion of matches. The analysis revealed a
significant negative effect of year on the odds of a match occurring,
b=-0.041, SE=0.004, 2=-9.35, p<.001. The results suggest that as the year
increases, the odds of a match decrease by approximately 4.05% per year,
ie., in contrast to mathematics, the increase in matches in computer

science 7s slightly less than the increase in preprints submitted.

A final metric I'd like to report is the number of matches by keyword.
Although it has no direct bearing on the philosophical issues, it is
interesting (and perhaps unsurprising) that the term ‘computer-assisted’
has the most matches with 734 (27.68%), followed by the names of the
proof assistants Coq with 607 (22.89%) and Isabelle with 380 matches
(14.33%). The complete results are given in Table 3 in the appendix.23

23 Caution should be exercised in drawing too much conclusions from these data. The
present study only considered titles and abstracts. It is likely that many papers use the
term ‘computer-assisted’ in their title or abstract but mention the software by name only
in the text of the paper, or vice-versa.
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4, Discussion

What conclusions can be drawn about the philosophical issue of
computer-assisted proofs? Do these conclusions offer arguments in favor
of the critic or the supporter? To answer these questions, I'll discuss the
merits of each of the claims introduced at the beginning of the previous
section in the light of the results. I'll conclude with some critical remarks.

C1 Computer-assisted proofs are unpopular and rarely found within
mathematical practice.

The critic adopts C1 as a consequence of the claim that computer-assisted
proofs are epistemically lacking, whereas ordinary proofs are not. Thus,
the number of computer-assisted proofs is expected to be quite small. In
order to assess whether this claim is supported by the empirical evidence, it
is necessary to qualify what is meant by ‘small’.

On a strong reading, ‘small’ could be taken to mean that there are only a
handful of computer-assisted proofs (i.e. the method is only advanced by
mavericks and not by serious mathematicians). This strong interpretation
is not supported by the empirical results: there are a considerable number
of computer-assisted proofs both across all categories (2.652 matches) and
within the category mathematics (695 matches). Although these numbers
are small compared to the number of non-matching preprints (0.1% for all
categories and 0.1% for mathematics), they might be larger than the strong
reading would suggest.24

However, on a weaker reading, C1 may be taken to mean that computer-
assisted proofs are not advanced in the majority of published papers. The
weaker reading is supported by the empirical findings. Computer-assisted
proofs are found, but their number remains small. In both mathematics
and computer science, the vast majority of preprints do not contain
matches, and while there are still a significant number of matches, they are
far too small to become the majority in the near future. So while the strong
reading of C1 is not supported by the empirical evidence, the weak reading

is.

24 A first analysis also shows that the matching papers are nor written by a small group of
very productive authors. In total, the 2.652 matching papers have more than 5.000
unique authors. It should be noted, however, that while these numbers show a clear trend
(i.c. a large number of individual authors), further empirical work would be needed to
make these numbers precise. For example, the names as they appear in the arXiv dataset
contain a larger number of mismatches (e.g. missing or differently spelt surnames) that
would need to be addressed.
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C2 Over time, the number of computer-assisted proofs remains (more
or less) unchanged.

To develop C2, I considered the idea that because of the advances in high-
speed computing over the last 50 years, and the widespread availability of
sufficiently fast systems (you no longer need a supercomputer to prove
4CT, an old laptop will do), it might seem natural that the number of
computer-assisted proofs would also increase. In my reconstruction, the
critic rejects this assumption. Because computer-assisted proofs are
thought to be epistemically deficient — because they amount to
“shenanigans” (Cohen, 1991, p. 328) —, their number is not increasing,
even though sufficiently fast computers become more accessible.

The empirical results clearly do not support C2. Looking at preprints
across all categories, the number of matches has increased over the years.
But it is not just increasing steadz'ly, it is increasing at an accelemtz’ng rate.
This suggests a rapidly growing trend in the number of computer-assisted
proofs in recent years: while their absolute number remains low, more
computer-assisted proofs are being published each year. Moreover, this
effect outweighs the increasing number of preprints submitted, i.c.
although the number of preprints submitted per year is also increasing, the
proportion of computer-assisted proofs submitted per year is increasing

€ven more.

A similar picture emerges when looking at preprints classified as
mathematics and, with a caveat, those classified as computer science. For
both, the number of preprints reporting on computer-assisted proofs is
not only increasing steadily, but at an accelerating rate. For mathematics,
this effect outweighs the increasing number of preprints submitted (i.e.,
the number of computer-assisted proofs categorized as mathematics is
increasing faster than the number of all submitted papers categorized as
mathematics). This is not the case for computer science. While the
number of preprints categorized as computer science is increasing, the
number of computer—assisted proofs categorized as computer science is not
increasing at the same rate. Unfortunately, the available data do not
provide an answer as to why this is the case. It could be that other areas of
computer science are receiving more attention, or that preprints reporting
on computer-assisted proofs are nowadays more likely to be assigned only
to their primary category (e.g. mathematics or eess), rather than also being

assigned to computer science.
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In any case, C2 is not supported by the empirical data. On the contrary,
the data suggest that the number of computer-assisted proofs is increasing
at an accelerating rate.

S1 Computer-assisted proofs are found in mathematical practice.

Supporters defend S1 in response to C1, i.e. to express the expectation that
computer-assisted proofs exist and are being advanced by mathematicians.
As with C1, a distinction can be made between a strong and a weak
reading. A strong reading would expect computer-assisted proofs to be
found in a large number of publications (though perhaps not in the
majority). A weaker reading would make no such assumption, but would
simply expect to find a not insignificant, though perhaps not large,
number of computer-assisted proofs.25

Clearly, the empirical results do not support the strong reading, as the
number of matches was found to be relatively low (0.1% for all categories,
0.1% for mathematics, 0.3% for computer science). However, the results
do support the weak reading. A total of 2.652 matches across all categories,
and, although these figures cannot be directly compared because a single
preprint can be assigned to several categories, 2.145 matches within
computer science and 695 matches within mathematics, represent a small
but significant proportion of the total.

S2 Over time, the number of computer-assisted proofs is rising.

The supporter’s S2, like the critic’s C2, formulates an expectation about
how the number of computer-assisted proofs will change over the years.
While the critic, in my reconstruction, denies that the number has changed
significantly, the supporter, perhaps pointing to technological and societal
advances over the last 50 years, assumes that the number of computer-

assisted proofs is increasing.

Indeed, S2 is well supported by the empirical evidence. Looking at
preprints across all categories, we see that the number of matches is not
only steadily increasing, but is increasing at an accelerating rate. In fact, it
has increased faster than the total number of preprints submitted, i.e. more
and more of the preprints submitted are reporting on computer-assisted
proofs. A similar conclusion was reached when looking at preprints in the
category mathematics. Within mathematics, too, the number of

251 do not think that any supporter has seriously advanced the strong reading.
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computer-assisted proofs is increasing faster than the total number of
preprints submitted.

Where do we stand? What is the epistemological status of computer-
assisted proofs? The empirical findings I have reported suggest that while
computer-assisted proofs are not the primary strategy that mathematicians
use when working on a problem - they are probably not the second or
third either — they do seem to have their place in the mathematical
community, at least as far as that community is reflected in the preprints
submitted to the arXiv. While the number of computer-assisted proofs is
relatively small, it is increasing and, more interestingly, increasing at an
accelerating rate. This finding seems to suggest that the epistemological
problems raised by the critic may have been somewhat exaggerated. If the
critic bases their argument against computer-assisted proofs on (EL),
claiming that they are rejected by the mathematical community as evidence
of their negative epistemic quality — framed in terms of the a priori/a
posteriori distinction — the data indicate that computer-assisted proofs are
no longer, or perhaps never were, rejected by the community. This tips the
scale towards the supporter: while not entirely without problems,
computer-assisted proofs do not seem to be epistemically lacking.

I foresee at least four possible objections to this conclusion. First, one
might object that the mathematical community is not epistemically well-
behaved. That is, contrary to (EL), the mathematical community’s
acceptance or rejection of a method or proof does 7ot provide evidence for
its epistemic quality. On this view, the data I report would bear no

relevance for the epistemic status of computer-assisted proofs.

I have already touched on this kind of reasoning in the discussion of (EL)
above. As I noted there, both critics and supporters seem to agree on (EL)
by pointing to mathematicians who reject or support computational
methods. So I do not think that giving up (EL) is a plausible move in the
context of the literature I have reviewed here. Moreover, one might ask
why one should care for computer-assisted proofs if not because of (EL). If
one does not assume that the mathematical community is epistemically
well-behaved, why should one want to make an epistemic distinction
between ordinary and computer-assisted proofs to begin with? Notions
like surveyability are discussed because some mathematicians are
concerned about computer-assisted proofs. Without (EL), why should one

try to recast these in epistemic terms?
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The second objection accepts (EL), but objects to applying corpus-based
methods to study whether the mathematical community accepts or rejects
a method or proof. It can be motivated as follows: acceptance or rejection
of a particular method by the mathematical community ultimately comes
down to whether individual mathematicians accept or reject proofs using
that method. This is not a simple binary decision, but a complex and
gradual process involving various factors. Corpus-based tools are thought
to be too coarse-grained to adequately measure this complexity. The
objection is therefore methodological. It assumes that there is a gap
between what is measured - the frequency of words or the number of
preprints containing those words — and the complex feelings of the agents
that make up the mathematical community.

I think the objection is correct in identifying a potential gap between what
is measured and scientific practice. But I also think it greatly exaggerates
the gap, while underestimating what corpus-based tools are able to
capture. First, note that there is always some sort of gap when applying
empirical methods to a philosophical question. Even if one resorts to
qualitative interviews, say, to study what mathematicians think about
computer-assisted proofs, conducting and interpreting the interviews
requires some sort of generalization to bridge the gap between what was
measured (the individual responses) and the philosophical question (the
mathematical practice). What matters is how this generalization is
justified.26 Second, studying mathematical publications and preprints
certainly is a justified way to study mathematical practice. If only because
publication practices are part of mathematical practice, so that by studying
the former one can (within certain limits) make justified generalizations
about the latter (cf. also Lean et al., 2023).27

The third objection I anticipate accepts (EL) and the use of corpus-based
methods, but insists that the results I have reported above do not show
enough to arrive at definitive conclusions about the epistemic status of
computer-assisted proofs. There might be finer details in how the
community, or individual mathematicians, think about computer-assisted

26 If interviews are used, the selection of interviewees, the catalogue of questions and the
coding of the responses must be justified. If corpus-based tools are used, one needs to
justify why the corpus chosen is representative and why the keywords chosen are relevant
for the underlying issue. As I have argued in section 3, the arXiv is representative of
mathematical practice, and the keywords are indicative of computer-assisted proofs.

27 This does not mean that other empirical methods should not also be used to study
what mathematicians think about computer-assisted proofs. On the contrary, using
different methods might be advisable to cover different aspects of the phenomenon.
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proofs. Perhaps there are certain areas or contexts in which computer-
assisted proofs are more likely to be accepted, but others in which they are
not. There might also be a distinction between a computer-assisted proof
of a new theorem (as was the case with 4CT), and formal verifications of
theorems that have already been proven in traditional ways. Additionally,
there is probably a historical dimension to these questions, in so far as early
computer-assisted proofs, like Appel and Haken’s proof of 4CT, are far
more difficult to read than contemporary ones that are much more
standardized.

In response, I do agree that it is highly plausible that such subtle
differences exist. Studying them would require more fine-grained analyses
than I have presented here. Corpus-based tools could still be helpful. For
example, the 2.652 matching preprints I have identified could be studied
further to learn more about their authors, and about the inner-
mathematical fields in which computational methods are applied.
However, I also want to point out that the question I have investigated
here is far less complex than the objection suggests. What is the
epistemological status of computer-assisted proofs? I have presented two
views, critics and supporters, and argued that both are committed to
empirical hypothesis about the number of publications reporting on
computer-assisted proofs. I then tested these hypotheses and found little
evidence to support critic’s claim. This does not mean that computer-
assisted proofs are without epistemic problems, but only that they do not
seem to be rejected by the mathematical community in the way critic

claims.28

The last objection I would like to consider is the relatively small numbers
of matches. Even if one agrees with my reasoning up to this point, one
might still claim that the number of matching preprints I have identified,
that is 2.652 matches across all categories (0.1%), and 2.145 matches
within computer science (0.3%) plus 695 in mathematics (0.1%),2° is
simply too low to claim that the mathematical community does not reject
computer-assisted proofs.

28 To take up the alleged distinction between computer-assisted proofs and formal
verifications, the point is that the critic (as I have framed her) would want to insist that
both are epistemically bad and therefore rejected by the mathematical community. My
findings suggest that this is not the case.

29 Note again that a single preprint can be assigned to more than one category. Therefore,
the total number always tends to be lower than the sum of the numbers in the individual
categories.
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As I have argued above, I agree as far as the estimation claims C1 and S1 are
concerned. The number of matches I found seems too low to pick one
over the other. But I also found that the number of preprints reporting on
computer—assisted proofs is increasing each year. Moreover, it is increasing
at an accelerating rate, exceeding the increase in submissions (except in
computer-science). This, as I have argued, is contrary to the assumption of
the critics (cf. C2), whereas it is consistent with the assumption of the
supporters (cf. S2). So although the absolute numbers are relatively low, I
claim that their accelerating increase establishes that computer-assisted
proofs are not rejected by the mathematical community.

5. Summary

What is the epistemological status of computer-assisted proofs? To answer
this question, both critics and supporters rely on quotes from
mathematicians who either criticize or support the use of computational
methods. Critics argue that mathematicians who oppose computer-
assisted proofs have a legitimate concern because computer-assisted proofs
are epistemically lacking. Supporters counter by pointing out that relevant
experts accept computer-assisted proofs and that the epistemic arguments
of the critics can be rejected. This stalemate can be resolved, I have argued,
by empirical studies. I have presented a study that analyses all preprints
submitted to the arXiv from 1986 to 2024 to count exactly how many
preprints reporting on computer-assisted proofs have been published, and
to investigate how this number changes over time. The results show that
there is a small but significant number of computer-assisted proofs on the
arXiv and, more importantly, that their number is increasing at an
accelerating rate. While more and more preprints are submitted to the
arXiv each year, my results suggest that the proportion reporting on
computer-assisted proofs is increasing even faster. Overall, this tips the
scales in favor of the supporters: while mathematicians may not exactly like
computer-assisted proofs, the epistemic concerns of the critics may have
been somewhat exaggerated.

Zooming out, one might ask whether the stalemate is also due to a
methodological difficulty. For example, Rota, a mathematician and strong
critic of computational methods, has this to say:
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[Appel and Haken’s] “proof” was the first verification of a major
mathematical theorem by computer. Mathematicians have been
ambivalent about such a verification. On the one hand, every
mathematician professes to be satisfied to learn that the conjecture has
been settled. On the other hand, the behavior of the community of
mathematicians belies such a feeling of satisfaction. Indeed, if
mathematicians had been satisfied with the computer verification of
the four color conjecture, then no one would not have felt the need for
further verifications. (Rota, 1997, p. 186)

Methodologically, Rota makes generalizations about the mathematical
community and his fellow mathematicians to support his critique. While
these may have some prima facie plausibility, given that Rota is an eminent
mathematician who may have some privileged insights, even eminent
mathematicians can err when generalizing about their discipline (Hanna &
Larvor, 2020). Rota’s view may be representative of a very particular
community, but not so much of other communities.3® But without
empirical research, there is no way to know. Empirical research on
mathematical practices and communities is needed to produce the
evidence that provides viable input to philosophical theorizing (Buldt et
al., 2008; Aberdein & Inglis, 2019). And, as perhaps in the case of
computer-assisted proofs, if done properly it can prevent bias in one
direction or another.

30 As for Appel and Haken’s proof, as mentioned above, the experts who were actively
working on the 4CT at the time were by no means ambivalent, but accepted the proof as
definitive.
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Appendix

year total matches %
1986 1 0 0%
1988 1 0 0%
1989 6 0 0%
1990 26 0 0%
1991 353 0 0%
1992 3.190 0 0%
1993 6.729 0 0%
1994 10.078 0 0%
1995 13.006 1 0,01%
1996 15.872 1 0,01%
1997 19.610 1 0,01%
1998 24.170 1 0%
1999 27.700 0 0%
2000 30.670 8 0,03%
2001 33.140 8 0,02%
2002 36.107 4 0,01%
2003 39.392 1 0,03%
2004 43.714 10 0,02%
2005 46.881 14 0,03%
2006 50.314 27 0,05%
2007 55.752 21 0,04%
2008 58.810 26 0,04%
2009 64.071 34 0,05%
2010 70.288 34 0,05%
2011 76.602 62 0,08%
2012 84.374 61 0,07%
2013 92.875 84 0,09%
2014 97.590 99 0,1%
2015 105.130 102 0,1%
2016 113.440 120 0,11%
2017 123.781 150 0,12%
2018 140.377 172 0,12%
2019 155.917 191 0,12%
2020 178.275 235 0,13%
2021 181.599 272 0,15%
2022 185.987 280 0,15%
2023 209.223 275 0,13%
2024 243.662 348 0,14%
2 2.638.713 2.652 0,1%
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year  math math cs cs eess eess other other
total matches total matches total matches total matches
1986 0 0 0 0 0 0 2 0
1988 0 0 0 0 0 0 1 0
1989 6 0 0 0 0 0 0 0
1990 24 0 2 0 0 0 0 0
1991 61 0 3 0 0 0 308 0
1992 358 0 1 0 0 0 3.356 0
1993 603 0 7 0 0 0 7.837 0
1994 948 0 251 0 0 0 11.926 0
1995 1.198 1 255 0 0 0 15.989 0
1996 1.419 1 237 0 0 0 19.436 0
1997 1.849 0 192 0 0 0 23.468 2
1998 2.697 0 334 1 0 0 27.051 0
1999 3.348 0 325 0 0 0 30.431 0
2000  4.096 1 511 7 0 0 31.992 0
2001 4.354 1 613 S 0 0 34.551 2
2002 5.637 2 702 1 0 0 36.692 1
2003  6.648 2 865 0 0 0 39.430 9
2004  8.352 S 1.022 1 0 0 42.359 4
2005  10.011 8 1.385 4 0 0 44.337 6
2006  11.996 3 1.898 12 0 0 46.114 13
2007  14.242 6 2.842 13 0 0 49.148 4
2008  15.518 6 3.645 20 0 0 50.851 2
2009 17.585 9 4.875 20 1 0 54.217 6
2010 21172 12 7.585 25 3 0 61.589 4
2011 24.162 19 9.125 47 5 0 67.199 8
2012 27.245 14 12.335 52 6 0 72.298 6
2013 30.223 15 14.940 72 7 0 75.448 9
2014  32.103 27 16.312 83 4 0 77.397 11
2015 34.737 32 18.834 79 23 0 81.633 S
2016 36.395 38 23.712 83 36 0 85.007 8
2017  38.483 40 30.813 119 750 0 87.944 9
2018  40.034 31 41.950 144 3.677 2 98.102 15
2019 42.983 44 55.524 163 9.842 24 109.903 25
2020  46.100 48 71.423 204 15.706 28 120.318 25
2021  45.135 85 77.517 223 14.381 32 111.901 34
2022 45.410 74 82.108 235 15.837 32 111.266 20
2023  47.924 74 100.015 240 17.256 25 117.659 19
2024 51.949 97 125.425 292 19.511 27 127.055 24
p) 675.005 695 707.583 2.145 97.045 170 1.974.215 271
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keyword matches %

acl2 97 3,66%

agda 188 7,09%
computer assisted 232 8,75%
computer-assisted 734 27,68%
coq 607 22,89%

hol 93 3,51%

idris 17 0,64%
isabelle 380 14,33%

lean 233 8,79%
metamath 21 0,79%
mizar 50 1,89%

) 2.652 100%
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