
What Is the Epistemological Status of 
Computer-Assisted Proofs? An Empirically-
Informed Approach  1

Paul Hasselkuß 
Heinrich Heine University Düsseldorf 

Accepted manuscript. Please cite the published version. 

Abstract In the last few decades, beginning with Appel and Haken’s 
proof of the four-color theorem, philosophers have been interested in the 
epistemological status of computer-assisted proofs. There are two 
opposing views. Critics point to mathematicians who criticize Appel and 
Haken’s proofs as a verification that falls short of a real proof (e.g. Rota, 
1997). They further argue that computer-assisted proofs are epistemically 
lacking because they cannot be surveyed or involve a specific risk of error 
(e.g. Tymoczko, 1979; Resnik, 1999). On the other hand, supporters point 
out that Appel and Haken’s proof was accepted by those mathematicians 
who were actively working on the four-color theorem (MacKenzie, 1999). 
Furthermore, they try to refute the epistemic arguments of the critics (e.g. 
McEvoy, 2022). The result is a stalemate between critics and supporters. In 
this paper, I argue that this stalemate can be resolved by empirical data. I 
report the results of an analysis of all 2.6 million preprints uploaded to the 
arXiv between 1986 and 2024, conducted to find out exactly how many 
computer-assisted proofs are published, and how their number changes 
over time. The results show that there is a small but not insignificant 
number of preprints reporting on computer-assisted proofs. More 
importantly, their number has been increasing at an accelerating rate. This 
suggests that the epistemic concerns of the critics may be somewhat 
exaggerated. 

1. Introduction 
In the last few decades there has been a continuous interest in computer-
assisted proofs. Beginning with Appel and Haken’s breakthrough proof of 
the four-color theorem (Appel & Haken, 1977a; Appel et al., 1977) and 
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what is taken to be a mixed reception in parts of the mathematical 
community, philosophers have been interested in two related questions: 
Are computer assisted-proofs genuine proofs, or do they merely verify 
their conclusions (e.g. Rota, 1997)? Moreover, are there any implications 
for the epistemology of mathematics, i.e. is the justification provided by 
computer-assisted proofs a posteriori because it is partly established by 
external means (e.g. Tymoczko, 1979)? 

Answers tend to fall into one of two opposing camps, critics and supporters. 
Critics point to the lukewarm, at best, reception of computer-assisted 
proofs by the mathematical community. In their view, mathematicians 
who oppose computer-assisted proofs correctly recognize that these proofs 
are epistemologically lacking: they do not provide the kind of secure and 
indubitable justification that is normally associated with mathematical 
proofs (i.e. computer-assisted proofs are a posteriori). On the other hand, 
supporters argue that the critics’ epistemological arguments are flawed in 
that they fail to distinguish between computer-assisted and ordinary, i.e. 
non-computer-assisted, proofs (i.e. computer-assisted proofs are a priori if 
ordinary proofs are).  Moreover, sociohistorical treatments of the Appel 2

and Haken proof and its context may be taken to indicate that the proof 
was accepted by relevant parts of the mathematical community, namely by 
those mathematicians working on the four-color theorem (MacKenzie, 
1999). Thus, while critics build on what they believe to be a negative 
response from the mathematical community, supporters can try to 
undermine that foundation by pointing to other voices within the 
community. 

In this chapter, I’ll argue that some progress can be made by taking an 
empirically informed view at the issue. Critics and supporters (though the 
latter perhaps to a lesser extent) rely on claims about mathematical 
practice, namely about what mathematicians think about computer-
assisted proofs. These claims are often supported by pointing to the 
mathematical community. But both critics and supporters can find 
mathematicians whose statements seem to support their views. Who 

 Note that there are also critics who avoid expressing their criticism in terms of the a 2

priori/a posteriori distinction. I assume that such criticism is either constructive or 
destructive. Constructive criticism does not object to computer-assisted proofs, but points 
out flaws that could be improved (e.g. Thurston, 1994, p. 162). Destructive criticism 
objects to the usage of computer-assisted proofs altogether (e.g. Rota, 1997, p. 186). I am 
taking it that destructive criticism, ultimately, does make for an epistemic distinction 
between ordinary and computer-assisted proofs that can be voiced in terms of the a 
priori/a posteriori distinction.
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should we trust? What do mathematicians really think about computer-
assisted proofs? One answer, I’ll argue, can be found through empirical 
research. I’ll report on a bibliometric study that examines how common 
computer-assisted proofs are and whether their number changes over time 
by analyzing the 2.6 million preprints submitted to the arXiv between 
1986 and 2024. The results address the above question indirectly: the 
number of computer-assisted proofs, as well as a possible decrease or 
increase in their number over time, is certainly indicative of the 
community’s attitude towards them. In fact, my results suggest that some 
of the critics’ claims may have been exaggerated. 

In the next section, I’ll give a more detailed overview of the arguments put 
forward by both, critics and supporters, as well as their respective views of 
the mathematical community’s reception. Section 3 puts these views to the 
empirical test. I’ll outline my approach and report the results. Finally, 
section 4 discusses the implications of these results in light of the 
arguments of both critics and supporters. 

2. Critics vs. supporters 
In this section, I’ll examine the arguments offered by both critics and 
supporters. In particular, it will be interesting to see their respective 
commitments about what mathematicians think about computer-assisted 
proofs. While critics emphasize a negative attitude, supporters point out 
that an important group of experts has no objection to computer-assisted 
proofs. Historically, the debate is anchored in Appel and Haken’s proof of 
the four-color theorem so I’ll start there. 

The four-color theorem states, in plain terms, that any planar map can be 
colored with four colors such that countries with a common boundary 
segment are given different colors. This can be translated to graph theory. 
Each country is represented by a vertex, and boundary segments between 
two countries are represented as connections between the corresponding 
vertices. So: 

4CT	 Every plane graph has a 4-coloring. 

The conjecture has been discussed since the middle of the 19th century, but 
a correct proof was not found until 1977. While this proof, by Appel and 
Haken, relies on a number of technical concepts that have been established 
through ordinary mathematical work (i.e. without the use of computers), 

Computer-Assisted Proofs	 	 3



the Appel and Haken proof relies on a computer to do some parts that are 
practically impossible for a human mathematician to do.  3

What did Appel and Haken do? A detailed account would be out of place 
here, so I’ll just give a brief, non-technical overview.  The overall strategy is 4

to prove that there is no counterexample to 4CT, i.e., that there is no plane 
graph that has a coloring of five or more. To do this, the proof relies on 
two technical concepts: unavoidable sets and reducible configurations. An 
unavoidable set is a set of sub-graphs such that every possible plane graph 
must include at least one of its members somewhere. A reducible 
configuration is a sub-graph which, when found within a larger graph, 
renders the graph four-colorable due to certain structural properties. While 
there are many unavoidable sets and many reducible configurations, to 
prove 4CT, it suffices to show that there is a single unavoidable set that 
consists entirely of reducible configurations. This proves that there is no 
plane graph with a coloring equal to or greater than five. 

Unavoidable sets can be found by a (complex) algorithm. The algorithm 
has been implemented and run computationally, but the published version 
of the proof contains an ordinary proof of the algorithm’s correctness 
(Appel & Haken, 1977a).  Thus the correctness of the algorithm “can be 5

checked by hand in a couple of months” (Appel & Haken, 1977b, p. 121). 
Reducibility is arguably more problematic. Checking whether a sub-graph 
is reducible ultimately amounts to a brute-force check of its individual 
features. While this is already time-consuming for smaller graphs, the 
graphs of the proof can have an outer ring size of 15 vertices – i.e. they are 
quite large – and, given the sheer number of graphs that need to be 
checked, “it would be virtually impossible to verify the reduction 
computations” (Appel & Haken, 1977b, p. 121) manually. Accordingly, 
the check for reducibility is implemented computationally. 

 It is worth noting there were a number of unsuccessful attempts before the proof was 3

found in 1977. The most famous of these, by Alfred Kempe in 1880, was not discovered 
to be faulty until 11 years later. A similar event took place shortly before Appel and 
Haken’s proof, when Yoshio Shimamoto’s proof attempt was refuted. Overall, these 
developments seem to have influenced a skeptical attitude towards proofs of the 4CT, and 
even towards the 4CT itself.
 For a detailed, but accessible outline of the proof, see Appel and Haken (1977b). The 4

canonical source is Appel and Haken (1989), for the socio-historical context see 
MacKenzie (1999).
 This is the so-called ‘discharging’ algorithm, originally due to Heesch (1969).5
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The result of this procedure is an unavoidable set of 1.936 reducible 
configurations (the number could later be reduced to 1.405 by eliminating 
redundancies and simplifying of the argument, cf. Appel & Haken, 1989) 
and thus a proof of the 4CT. 

To conclude the historical exposition, it is worth mentioning that 
Robertson et al. (1997) and Gonthier (2008) have published a new proof 
of the 4CT. This new proof is based on the same concepts – it still searches 
for an unavoidable set of reducible configurations – and is still computer-
assisted, but it improves on the Appel and Haken proof by greatly 
simplifying the algorithm used to identify unavoidable sets. Moreover, the 
computational parts were implemented in Coq, a standardized proof 
assistant, whereas Appel, Haken, and their collaborator John Koch had to 
implement these parts in assembly language and run them on bare metal.  6

What are the philosophically interesting aspects of this story? Critics begin 
by citing the “mixed” (Wilson, 2014, p. 157) reaction to the proof, with 
mathematicians expressing discomfort with the reliance on a computer to 
perform the reducibility check. This is acknowledged to some extent even 
by Appel and Haken: 

Many mathematicians … resist treating the computer as a standard 
mathematical tool. They feel that an argument is weak when all or part 
of it cannot be reviewed by hand computation. From this point of 
view the verification of results such as ours by independent computer 
programs is not as convincing as the checking of proofs by hand. 
(Appel & Haken, 1977b, p. 121) 

To give a few examples, Appel and Haken’s proof has been criticized (by 
fellow mathematicians!) for not giving “a satisfactory explanation why the 
theorem is true” (Stewart, 1981, p. 304), partly because the computational 
parts are impossible to grasp. What Appel and Haken have archived is at 
best “a computer verification of the four color conjecture” (Rota, 1997, p. 
186, my emphasis). The proof is not regarded as definitive and further 
verifications are needed. At worst, it amounts to “computer shenanigans 
[that] leave us intellectually unfulfilled.” (Cohen, 1991, p. 328) The most 
telling example might be the following story of Haken, who recalls that 
when he visited another university to give a talk about Appel and his 

 Assembly language is a low-level language in which each statement corresponds directly 6

to a machine instruction. It requires manual management of low-level operations (e.g. 
memory addressing and instruction sequencing) and provides minimal abstraction and 
error checking. In contrast, Coq and other modern proof assistants use high-level 
languages that abstract and manage many low-level operations internally.
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proof, a senior mathematician from that university actively tried to 
prevent him from engaging with local graduate students, apparently to 
protect them from the bad influence of his computational methodology 
(MacKenzie, 1995, p. 41). 

But the critics do not stop there. The next step is to turn some of these 
points into an epistemic argument, i.e. to argue that computer-assisted 
proofs differ in an epistemically relevant way from their non-computer-
assisted counterparts. The idea seems to be that those mathematicians who 
object to the use of computer-assisted proofs are actually responding to an 
epistemic difference between ordinary proofs and their computational 
counterparts.  Often, the aim is to argue that computer-assisted proofs 7

provide an a posteriori justification for their conclusions, whereas ordinary 
proof might be expected to provide an a priori justification for their 
conclusions.  8

To spell out the difference precisely, Tymoczko (1979, pp. 59-60) has 
coined the notion of surveyability: 

S	 A proof is surveyable if and only if it can be completely looked 
over, reviewed, and verified by a rational agent. 

Surveyability is of interest because it explains why a mathematician who 
reads a proof becomes convinced of the correctness of the conclusion. The 
proof leaves no room for doubt, i.e., if a mathematician is able to survey 
the proof and finds it to be valid, she must also accept its conclusion. 
Nothing about how the proof came about, or how it was found, is 
necessary to accept its conclusion.  The next step is to argue that Appel 9

and Haken’s proof is not surveyable because the reducibility part cannot 
be checked by hand (Tymoczko, 1979, p. 70). 

 That is, it is assumed that the mathematical communities’ reactions provide strong 7

evidence for the epistemic quality of computer-assisted proofs. I will return to this point 
below.
 To complicate matters, Tymoczko (1979) and Kitcher (1984) claim that the 8

justifications provided by ordinary proofs are also a posteriori. For them, the case of 
computer-assisted proofs is of interest because it brings to light what an otherwise 
overlooked problem. For the purposes of this paper, however, it is sufficient to focus on 
computer-assisted proofs.
 Recently it has been suggested to replace ‘surveyability’ with the more general notion of 9

‘transferability’, where a proof is transferable if and only if the sequence of propositions 
itself constitutes the proof (De Toffoli, 2021, pp. 9-11). While this may be a fruitful idea, 
for the context of this chapter the already established notion of surveyability will suffice.
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The (un)surveyability has direct implications for the a priori/a posteriori 
distinction. Some authors argue that unsurveyable proofs do not 
constitute a priori justifications. Traditionally, a priori justifications have 
been characterized as indefeasible. This supposed indefeasibility is 
incompatible with justifications involving perception or recollections from 
memory: both are fallible and therefore defeasible (De Toffoli, 2021, 
p. 10). When applied to mathematical proofs, the consequences are clear. 
If a proof is surveyable, a skilled mathematician can easily follow each of its 
deductive steps and thereby gain an indefeasible justification for its 
conclusion. But if a proof cannot be fully surveyed, then any justification a 
mathematician might gain from the proof will be defeasible, because the 
mathematician cannot follow each of the proof’s deductive steps, but has 
to accept the computer’s output at some point. In counterfactual 
scenarios, contrary evidence – even empirical evidence – could undermine 
whatever justification the mathematician gained from the computer-
assisted proof (Kitcher, 1984, p. 46).  10

A second argument used by critics is also based on the lack of surveyability. 
A mathematician who reads the proof and accepts 4CT on the basis of her 
reading cannot in principle rule out that the computational parts of the 
proof contain programming errors or hardware failures (Resnik, 1999, 
pp. 150-153).  If the mathematician still believes that 4CT is correct, her 11

belief is based not only on what she has read, but also on the (empirical) 
assumption that there were no programming errors or hardware failures, 
i.e. on a very general assumption about computers, perhaps to the extent 
that if such failures had occurred, they would not have produced the 
output necessary for the proof. The important point here is that this 
assumption goes beyond what the proof itself offers, and, so the critics 
argue, an analogous assumption is not needed in ordinary proofs. These 
can be surveyed, and therefore verified, by a (skilled) agent without having 
to think about how the proof was produced. Again, the implications for 
the a priori/a posteriori distinction are obvious. If accepting the result of a 
computer-assisted proof involves an empirical claim about the reliability of 

 The same argument has been made against ordinary proofs which are very long 10

(Kitcher, 1984, pp. 40-46). Within the framework outlined above, a mathematician 
conducting a long proof must memorize and later recall immediate steps. Since our 
memory is fallible, the justification of the proof is a posteriori. Be that as it may, to 
criticize the argument it suffices to show that a priori justifications are not indefeasible. I 
will return to this point below.

 Appel and Haken’s proof was thought to contain such errors, although none could be 11

found (MacKenzie, 1995, p. 42).
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computers, an agent’s belief in the conclusion of the proof can hardly be 
assumed to be justified a priori. 

Supporters of computer-assisted proofs who wish to respond to these 
challenges seem to have two strategies at their disposal. One is to respond 
to the claim that the reception of computer-assisted proofs by the 
mathematical community has been overwhelmingly negative. A second 
strategy is to refute the epistemological challenges. I’ll now discuss both 
strategies. 

Modern mathematics is a highly specialized field. Mathematicians working 
in one sub-field often have great difficulty following the work of their 
colleagues working in another sub-field, let alone those working in another 
field (Thurston, 1994, p. 3). With this in mind, one may wonder how 
much weight should be given to the statements quoted by the critics. Most 
of the mathematicians who were quoted, although established scholars, 
have not been involved in recent graph theory or in the developments that 
led to Appel and Haken’s proof. One may wonder what the 
mathematicians who have been involved in these communities think about 
computer-assisted proofs, and about Appel and Haken’s proof in 
particular. 

W. T. Tutte, a leading graph theorist who had been critical of earlier 
computational attempts to prove the 4CT, is known to have publicly 
touted Appel and Haken’s proof as correct (Kolata, 1976). In addition, the 
core group of mathematicians who were actively working on the 4CT 
using methods similar to those of Appel and Haken – namely Frank 
Allaire, E.R. Swart, and Frank Bernhart – reacted quite enthusiastically to 
what they believed to be a successful proof: 

I can only tell you that we were unanimous in our view that [Appel 
and Haken had] done it. Unanimous. (Sward in an interview with A.J. 
Dale, quoted after MacKenzie, 1995, p. 42; cf. also Swart, 1980) 

In light of these voices, supporters can argue that the critic’s assessment of 
the mathematical community’s stance is biased. While some 
mathematicians have objected to computer-assisted proofs, and in 
particular to the proof of the 4CT, the relevant experts have not. On the 
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contrary, they have praised Appel and Haken’s methodology and refuted 
the criticism of their colleagues (e.g. in Swart, 1980).  12

The second strategy that the supporters can resort to is to respond to the 
epistemological arguments of the critics. More specifically, supporters 
argue that the notion of surveyability is epistemically negligible. McEvoy 
(2007) has argued that the very same proof can be represented differently, 
e.g. by using different notations. While one representation may not be 
surveyable, another representation of the very same proof may be. Thus 
one can turn an unsurveyable proof into a surveyable one by translating it 
from one representation into another. Given this possibility, McEvoy 
argues, surveyability does not seem to have any effect on the a priori/a 
posteriori distinction, contrary to what the critics claim. While a change in 
representation may transform a non-surveyable proof into a surveyable 
one, the change is unlikely to transform an a posteriori proof into an a 
priori one. This distinction does concern the proof and its justification, 
not its presentation. So the only viable explanation is that the proof (or 
rather the justification it provides) was a priori all along.  13

Another response to the challenge focuses on the alleged connection 
between the possibility of doubt and the a priori/a posteriori distinction. 
Kitcher (1984), voicing the critical position, argued that the justification 
provided by computer-assisted proofs is defeasible because the proofs 
cannot be fully surveyed. Consequently, if a priori justifications are said to 
be indefeasible, the justification provided by computer-assisted proofs is a 
posteriori. However, responses from the epistemological literature 
challenge this conclusion. It has been argued that a priori justifications are 
in fact defeasible and can be undermined by both non-empirical and 
empirical evidence (Casullo, 1988). 

A similar treatment can be given to Resnik’s (1999, pp. 150-153) concern 
about implicit empirical assumptions. While Resnik is right about the 
presence of such assumptions, the same assumptions are also present in the 
case of ordinary proofs: “flaws in the computer implementation … are 
nothing other than errors of logic, no different … in proofs that have 
nothing to do with computer” (Swart, 1980, p. 703). While accepting the 

 Historically, it is interesting to note that other mathematicians, including Allaire, 12

Steward and Bernard, were working on their own computer-assisted proof of the 4CT 
(Wilson, 2014, pp. 150-151). Heesch had (unsuccessfully) attempted a computer-assisted 
proof before. In this sense, the option of attempting a computer-assisted proof may have 
been on the table for some time before Appel and Haken succeeded.

 See McEvoy (2022) for further responses to the critics.13
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result of a computer-assisted proof may involve some kind of trust in the 
inner workings of the computer, in practice a similar kind of trust is 
invoked when accepting the result of an ordinary proof (of a certain 
complexity and length).  In any case, it is argued that this aspect has no 14

implications on the a priori/a posteriori distinction. 

Where do we stand? So far I have painted a rather mixed picture. On the 
one hand, critics hope to argue that computer-assisted proofs are 
epistemically lacking, i.e. that they provide a posteriori justification where 
ordinary proofs might be expected to provide a priori justification. The 
argument is based on the notion of surveyability. It is argued that 
computer-assisted proofs are not surveyable, whereas ordinary proofs are. 
Supporters, in turn, argue against this verdict. While they agree that 
computer-assisted proofs may not be perfectly surveyable, they argue that 
this has no implications for their epistemological status. 

Both positions have their roots in mathematical practice. Critics cite 
mathematicians who actively oppose the use of computer-assisted proofs 
to argue that there is something fundamentally wrong with these proofs. 
To explain what exactly is wrong, they appeal to the a priori/a posteriori 
distinction. In contrast, supporters cite mathematicians who are more 
open to computational methods. They argue that, contrary to the critics’ 
portrayal, mathematicians are not universally opposed to computational 
methods: while some reject their use, others embrace them. While this 
divergence may still call for an explanation, it challenges the idea that there 
is something fundamentally wrong with computer-assisted proofs. 

Both critics and supporters presuppose that the mathematical community 
acceptance of a proof or method is a good indicator of its epistemically 
quality. This presupposed epistemic link can be spelled out as follows: 

EL	 The mathematical community’s acceptance or rejection of a 
method or proof provides strong evidence of its epistemic quality 
– either positively or negatively. 

While this assumption is common at least in the epistemological strand of 
the philosophy of mathematical practice (Carter, 2019, pp. 16-22), the 
appeal to (EL) is not entirely unproblematic. Community consensus may 
also reflect sociological or cultural trends, rather than purely 
epistemological considerations. Also, different parts of the community 

 Swart adds that, in comparison, he trusts the parts of Appel and Haken’s proof that 14

were done by a computer more than the parts that were done by hand.

Computer-Assisted Proofs	 	 10



may hold different views. When the supporter argues against the critic that 
relevant parts of the mathematical community have accepted Appel and 
Haken’s proof, she is pointing out that the critic has mistakenly appealed 
to (EL), i.e. the critic mistakenly assumes that the whole community 
objects to Appel and Haken’s proof, whereas only some parts of the 
community have objected. However, given that critics and supporters 
share their commitment to (EL), it seems unproblematic to adopt it for 
the present discussion.  15

This leaves us at a stalemate: if critics rely on those mathematicians who 
oppose computational methods and supporters rely on those who 
embrace them, who is correct? What do mathematicians really think about 
computer-assisted proofs? And what is their epistemological status? In the 
next section, I argue that this question ultimately requires empirical 
investigation. 

3. Investigating the issue empirically 
In this section, I’ll argue that both critics and supporters not only use 
claims about the mathematical community’s reception of computer-
assisted proofs to support their respective views, but also make implicit 
assumptions about how the mathematical community would be expected 
to behave or think if their respective views were correct. And these 
assumptions can (and arguably should, cf. Aberdein & Inglis, 2019) be 
tested empirically. Below, I’ll describe a methodological approach to 
testing these assumptions by analyzing preprints submitted to the arXiv, 
and I’ll report the results. But first, let me make the implicit assumptions 
explicit. 

The critic points to the statements of mathematicians who react negatively 
to computer-assisted proofs to support her epistemological points, i.e. she 
argues that the mathematicians’ discomfort is strong evidence that 
something is epistemically wrong with computer-assisted proofs (i.e. she 
commits herself to (EL) as outlined above). Next, the critic points to the a 
priori/a posteriori distinction to answer what is epistemically wrong with 

 Note that this does not imply that any critical or supporting position must be based on 15

(EL). For instance, a critic might argue that computer-assisted proofs are epistemically 
flawed based on purely epistemic reasons, irrespective of the community’s stance. 
However, as far as I have reviewed the existing literature above, this is not how the debate 
has unfolded. Critics begin with observations about opposition to computer-assisted 
proofs within the mathematical community and infer epistemological consequences from 
there.
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computer-assisted proofs. While the critic provides some evidence for the 
starting claim by citing mathematicians who have reacted negatively, the 
critic is nevertheless committed to the broader claim that the mathematical 
community as a whole reacts negatively. Only this broader claim can be 
used to invoke (EL). And this broader claim can be tested empirically. 

One metric to track acceptance or rejection is the number of computer-
assisted proofs, or rather the number of papers including computer-
assisted proofs, that are published. If computer-assisted proofs are not 
accepted by the mathematical community, one would expect that, apart 
from perhaps a few mavericks, mathematicians would not want to write 
and publish computer-assisted proofs. Thus, the critic is committed to the 
following, arguably rather broad, estimation claim: 

C1	 Computer-assisted proofs are unpopular and rarely found within 
mathematical practice. 

More specifically, it might be interesting to consider whether popularity is 
expected to change over time. Appel and Haken may have been pioneers in 
their field, but at the time of their work, computer-assisted proofs were 
not exactly popular.  Since then, however, mathematicians may have 16

become more accustomed to computational methods. Appel and Haken 
speculate that their proof faced opposition, particularly from those 
mathematicians “educated before the development of high-speed 
computers” (Appel & Haken, 1977b, p. 121). With the huge advances 
made in the development of (not only) high-speed computers in the last 50 
years, and the increasing popularity of informatics and computer science 
among mathematics students, can we expect that the number of 
computer-assisted proofs will increase? 

The critic, I think, would give a negative answer. If computer-assisted 
proofs are not accepted (for epistemic reasons, as the critic will want to 
claim), and if mathematicians therefore shy away from engaging with them 
(as (EL) suggests), then the critic would expect that this will not change. 
The critic would thus be committed to the following relational claim 
(considering the relation between different points in time and the number 
of computer-assisted proofs): 

C2	 Over time, the number of computer-assisted proofs remains (more 
or less) unchanged. 

 To my mind, Appel and Haken’s proof was the first computer-assisted proof 16

published.
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Together with C1, C2 implies that the number of computer-assisted 
proofs is and remains low. 

Let us now look at the supporter’s view of the matter. In the supporter’s 
view, the mathematical community as a whole is not reacting negatively 
towards computer-assisted proof. Although some mathematicians object 
to their usage, they are the exception rather than the norm. Most 
mathematicians may be indifferent, while some may even endorse 
computational methods. In any case, on the supporter’s view, there is not 
enough evidence to invoke (EL) to argue that there is a fundamental 
epistemic problem.  Computer-assisted proofs may not be perfect, but 17

the supporter holds that there is nothing epistemically wrong with them, 
simply because there is no universal rejection. Accordingly, the supporter 
might express the following expectation: 

S1	 Computer-assisted proofs are found in mathematical practice. 

Note that the supporter does not have to claim that computer-assisted 
proofs are particularly popular, or that the number of proofs found 
exceeds some (fairly high) threshold. What might be expected is that their 
number is greater than the critic would expect, but there is no need (or 
way) to quantify this assumption. Perhaps it is fair to say that, on the 
supporter’s view, computational methods are expected to be endorsed by 
wider parts of the mathematical community, and not just by a few 
mavericks. 

What is the supporter’s corollary to C2? Given the tremendous advances 
in the development (and widespread availability) of fast computers and the 
increasing popularity of computer science, the supporter might adopt the 
following: 

S2	 Over time, the number of computer-assisted proofs is rising. 

We now have four empirical claims about mathematical practice, namely 
about the number of computer-assisted proofs that can be found. These 
claims follow from the respective philosophical positions of critics and 
supporters, and their reliance on (EL). When these claims are tested 
empirically, the corresponding philosophical position is also tested.  18

 Needless to say, there is not enough evidence to invoke (EL) to argue that computer-17

assisted proofs are epistemically good, either.
 Note that C2 and S2 are incompatible. As the results will show, the crucial finding 18

concerns how the number of computer-assisted proofs changes over time, one could 
simplify things and focus exclusively on C2. 
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Next, I’ll describe a method for doing just that. 

3.1 Method 
From the way claims C1, C2, S1, and S2 are worded, it should be obvious 
that I am interested in the number of computer-assisted proofs and how 
this number changes over time. One method of generating the relevant 
data is bibliometric analysis.  The plan is as follows: first, one needs a way 19

to access a sufficiently large bibliographic dataset that is representative of 
the mathematical practice and the community one wants to study. Then 
one needs to devise a way to extract computer-assisted proofs from what is 
available in the dataset. Finally, one counts the number of computer-
assisted proofs and checks if and how their number has changed over time. 
The results can be compared with the expectations set out in C1, C2, S1, 
and S2. I’ll now describe each of these steps. 

Given the need for a representative dataset, it is common practice to rely 
on the arXiv (e.g. in Mejía-Ramos et al., 2019 and Tanswell & Inglis, 
2024). The arXiv is a repository for preprints of academic articles in fields 
such as mathematics, computer science, physics, quantitative biology, 
statistics, electrical engineering and systems science. It is the primary 
repositories that mathematicians around the world use to share their work 
(McKinney, 2011). It is therefore reasonable to assume that by using data 
from the arXiv, one will get a dataset that is representative of current 
mathematical practice and community. Another advantage of the arXiv is 
that it is open access. Preprints and their metadata can be freely viewed and 
downloaded without technical or legal hurdles. For the purposes of this 
chapter, I have used the so-called ‘arXiv dataset’, which contains the 
metadata of all 2.6 million articles currently on the arXiv and is available 
for download on Kaggle (arXiv.org, 2025). 

Having a representative dataset, the next step is to extract the preprints 
that contain computer-assisted proofs. To do this, I have devised a list of 
keywords, each of which is assumed to be indicative of a computer-assisted 
proof. The idea is that any preprint that contains at least one of these 
keywords is likely to report on a computer-assisted proof. In technical 
jargon, this amounts to a Boolean information retrieval without ranking 
(Manning et al., 2008, pp. 1-17). The arXiv dataset forms the collection 
(or corpus) from which information is retrieved, while the metadata of 

 To be clear, bibliometrics is certainly not the only way, but only one of many empirical 19

ways to study the question. In fact, it may by advisable to use different methods to study 
the same question (Löwe & Kerkhove, 2019).
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each preprint are the (so-called) documents within the corpus. The 
Boolean condition consists of the list of keywords given below. 

The keywords include the terms ‘computer-assisted’ and ‘computer 
assisted’, the latter to catch a common typo. It also includes the names of 
all proof assistants listed in the Wikipedia article on proof assistants, 
provided that there is at least one article in the arXiv, reporting on a 
computer-assisted proof that includes the name.  20

Next, all entries in the dataset were matched against the list of keywords. 
For practical reasons, matching was limited to both titles and abstracts. It 
is assumed that if a paper contains a computer-assisted proof, rather than 
an ordinary one, this information will be given in either the title or the 
abstract. Initial results confirm that this tactical assumption is feasible. 

It is a unique feature of the arXiv that both titles and abstracts often 
contain LaTeX code. Previous projects built around data extracted from 
the arXiv have devised ways to strip the LaTeX code in order to analyze the 
underlying text (Mejía-Ramos et al., 2019; Tanswell & Inglis, 2024). For 
this project, however, it quickly became clear that such processing was not 
necessary. Initial results showed that the keywords, if present, did not 
interfere with the LaTeX code. For the same reason, it was not necessary to 
lemmatize the text (i.e., reduce words to their base or dictionary form to 
facilitate corpus-based analysis), although lemmatization would probably 
be necessary if the title and abstract of matching papers were analyzed 
further. However, it was necessary to match the keywords in a case-
insensitive-manner, i.e. an article was counted as a match if its title or 
abstract included one of the keywords, regardless of the case of the word. 
Initial results confirmed that this works, except for ‘HOL’ and ‘Lean’, 
both of which result in false positives when matched case-insensitively.  21

However, these could be remedied by case-sensitive matching of these two 
words. 

Keywords

ACL2, Agda, Coq, HOL, Idris, Isabelle, Lean, Metamath, Mizar, computer-assisted, 
computer assisted

 This was confirmed by entering the term in the arXiv online search and manually 20

checking the resulting preprints.
 The term ‘lean’ is often used in its ordinary English sense, rather than referring to the 21

proof assistant of the same name. ‘HOL’ is sometimes used to name a function within 
mathematical formulae.
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Matching and statistical computations were performed using R (version 
4.4.2; R, 2024), the code is available on GitHub.  Let me now report the 22

results. 

3.2 Results 
The dataset contains 2.638.713 preprints submitted between 1986 and 
2024. (Preprints newer than 2024 were removed before conducting the 
analysis.) A total of 2.652 matched the condition, i.e. they were classified 
as reporting on computer-assisted proofs because their title or abstract 
contained at least one of the keywords (0.1%). 

The next step was to see if the number of matches per year changed. It was 
found that until the year 1999 there were almost no matches, but then the 
number of matches increased relatively quickly. In the year 2000 there 

were 8 matches, while in the year 2024 there were 348 matches. Figure 1 
shows the number of matches per year, the details are listed in Table 1 in 
the appendix. 

In order to estimate how the number of matches grows over the years, a 
quadratic regression analysis was carried out, i.e. it was investigated 

 https://github.com/paulHasselkuss/computer-assisted-proofs-arxiv22
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Fig. 1 Preprints matching at least one of the keywords and uploaded between 1986 and 
2024. Each preprint is counted exactly once.

https://github.com/paulHasselkuss/computer-assisted-proofs-arxiv


whether the growth rate itself changes over time. The model was 
statistically significant, F(2,35)=542.1, p<.001, and explained a significant 
proportion of the variance in the number of matches, R2=.967 (adjusted 
R2=.967). The first degree polynomial term was a significant predictor, 
b=510.59, SE=17.98, t(35)=28.4, p<.001. The second degree polynomial 
term also significantly predicted the number of matches, b=299.60, 
SE=17.98, t(35)=16.66, p<.001. This suggests that the number of matches 
is not just increasing steadily, but at an accelerating rate. 

If we look at the number of preprints submitted to the arXiv per year, we 
can see that the number of preprints also seems to be increasing at an 
accelerating rate (see Table 1 in the appendix). Thus, it may be natural to 
assume that the increase in matches is merely due to the increase in the 
number of preprints submitted, i.e. while the absolute number of matches 
increases over the years, the proportion of matches relative to the number 
of preprints submitted may remain unchanged. 

A logistic regression analysis was performed to access the relationship 
between year and the proportion of matches. The model was statistically 
significant, χ2(1)=599.83, p<.001, and showed a strong relationship 
between the year and the likelihood of a match. Year was a significant 
positive predictor of matches, b=0.076, SE=0.0035, z=21.94, p<.001. This 
indicates that the probability of a match increases by approximately 7.9% 
with each passing year, i.e. the increase in matches exceeds the increase in 
preprints submitted (contrary to the assumption outlined above). 

So far, I have reported the results of looking at papers from all fields that 
can be submitted to the arXiv. This includes academic fields that are 
relevant to the philosophical question (such as mathematics and computer 
science), but also fields that are not (such as astrophysics or nonlinear 
science). To make the results more precise, in the next step I looked only at 
preprints that were assigned to relevant categories. However, this is not 
entirely unproblematic, as a single preprint is often assigned to several 
categories, i.e. a unique preprint can be assigned to both mathematics and 
astrophysics. Thus, preprints have to be counted once for each category to 
which they are assigned, and the resulting counts cannot be compared 
with the counts of the preprints reported above. 

Looking at the number of matches per category, most matches are found 
in computer science (2.145 matches, 0.3% of 707.583 preprints within the 
category), followed by mathematics (695 matches, 0.1% of 675.005 
preprints), and electrical engineering and systems science (170 matches, 
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0.18% of 97.045 preprints). Matches in the remaining categories sum to 
271 (0.01% of 1.974.215 preprints). Figure 2 shows the number of 
matches per category and year, while details are given in Table 2 in the 
appendix. 

The categories mathematics and computer science were subjected to 
further scrutiny. For mathematics, a quadratic regression analysis was 
performed to estimate how the number of matches within the category 
increases over the years. The model was statistically significant, 
F(2,33)=253.7, p<.001, and explained a significant proportion of the 
variance in the number of matches, R2=.939 (adjusted  R2=.935). The 
analysis revealed a significant positive linear effect of year on the number 
of matches, b=134.26, SE=6.85, t(33)=19.6, p<.001, and a significant 
positive quadratic effect, b=76.03, SE=6.85, t(33)=11.10, p<.001. This 
indicates that the number of matches within the mathematics category 
increased at an accelerating rate over time. 

A logistic regression analysis was performed to investigate whether the 
increase in matches exceeded the increase in preprints submitted within 
the category. The model was statistically significant, χ2(1)=144.14, p<.001, 
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Fig. 2 Preprints matching at least one of the keywords and uploaded between 1986 and 
2024, listed by category. As a unique preprint can have several categories, a unique 
preprint may be counted for several categories.



indicating that the year is a strong predictor of the proportion of matches. 
The analysis revealed a significant positive effect of year on the odds of a 
match occurring, b=0.084, SE=0.008, z=11.0, p<.001. The results suggest 
that as the year increases, the probability of a match within mathematics 
increases by approximately 8.7% per year, i.e. the increase in matches 
exceeds the increase in preprints submitted. 

For computer science, a quadratic regression analysis was performed to 
estimate how the number of matches within the category increases. The 
model was statistically significant, F(2,32)=633.4, p<.001, and explained a 
significant proportion of the variance in the number of matches, R2=.975 
(adjusted R2=.97). The analysis revealed a significant positive linear effect 
of year on the number of matches, b=423.0, SE=13.91, t(32)=30.91, 
p<.001, and a significant positive quadratic effect, b=245.56, SE=13.91, 
t(32)=17.65, p<.001. These results suggest that the number of matches 
within the category of computer science has increased at an accelerating 
rate over time. 

A logistic regression analysis was performed to study whether this effect 
exceeded the increase in submissions within the category. The model was 
statistically significant, χ2(1)=79.18, p<.001, indicating that year was a 
significant predictor of the proportion of matches. The analysis revealed a 
significant negative effect of year on the odds of a match occurring, 
b=−0.041, SE=0.004, z=−9.35, p<.001. The results suggest that as the year 
increases, the odds of a match decrease by approximately 4.05% per year, 
i.e., in contrast to mathematics, the increase in matches in computer 
science is slightly less than the increase in preprints submitted. 

A final metric I’d like to report is the number of matches by keyword. 
Although it has no direct bearing on the philosophical issues, it is 
interesting (and perhaps unsurprising) that the term ‘computer-assisted’ 
has the most matches with 734 (27.68%), followed by the names of the 
proof assistants Coq with 607 (22.89%) and Isabelle with 380 matches 
(14.33%). The complete results are given in Table 3 in the appendix.  23

 Caution should be exercised in drawing too much conclusions from these data. The 23

present study only considered titles and abstracts. It is likely that many papers use the 
term ‘computer-assisted’ in their title or abstract but mention the software by name only 
in the text of the paper, or vice-versa.
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4. Discussion 
What conclusions can be drawn about the philosophical issue of 
computer-assisted proofs? Do these conclusions offer arguments in favor 
of the critic or the supporter? To answer these questions, I’ll discuss the 
merits of each of the claims introduced at the beginning of the previous 
section in the light of the results. I’ll conclude with some critical remarks. 

C1	 Computer-assisted proofs are unpopular and rarely found within 
mathematical practice. 

The critic adopts C1 as a consequence of the claim that computer-assisted 
proofs are epistemically lacking, whereas ordinary proofs are not. Thus, 
the number of computer-assisted proofs is expected to be quite small. In 
order to assess whether this claim is supported by the empirical evidence, it 
is necessary to qualify what is meant by ‘small’. 

On a strong reading, ‘small’ could be taken to mean that there are only a 
handful of computer-assisted proofs (i.e. the method is only advanced by 
mavericks and not by serious mathematicians). This strong interpretation 
is not supported by the empirical results: there are a considerable number 
of computer-assisted proofs both across all categories (2.652 matches) and 
within the category mathematics (695 matches). Although these numbers 
are small compared to the number of non-matching preprints (0.1% for all 
categories and 0.1% for mathematics), they might be larger than the strong 
reading would suggest.  24

However, on a weaker reading, C1 may be taken to mean that computer-
assisted proofs are not advanced in the majority of published papers. The 
weaker reading is supported by the empirical findings. Computer-assisted 
proofs are found, but their number remains small. In both mathematics 
and computer science, the vast majority of preprints do not contain 
matches, and while there are still a significant number of matches, they are 
far too small to become the majority in the near future. So while the strong 
reading of C1 is not supported by the empirical evidence, the weak reading 
is. 

 A first analysis also shows that the matching papers are not written by a small group of 24

very productive authors. In total, the 2.652 matching papers have more than 5.000 
unique authors. It should be noted, however, that while these numbers show a clear trend 
(i.e. a large number of individual authors), further empirical work would be needed to 
make these numbers precise. For example, the names as they appear in the arXiv dataset 
contain a larger number of mismatches (e.g. missing or differently spelt surnames) that 
would need to be addressed.
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C2	 Over time, the number of computer-assisted proofs remains (more 
or less) unchanged. 

To develop C2, I considered the idea that because of the advances in high-
speed computing over the last 50 years, and the widespread availability of 
sufficiently fast systems (you no longer need a supercomputer to prove 
4CT, an old laptop will do), it might seem natural that the number of 
computer-assisted proofs would also increase. In my reconstruction, the 
critic rejects this assumption. Because computer-assisted proofs are 
thought to be epistemically deficient – because they amount to 
“shenanigans” (Cohen, 1991, p. 328) –, their number is not increasing, 
even though sufficiently fast computers become more accessible. 

The empirical results clearly do not support C2. Looking at preprints 
across all categories, the number of matches has increased over the years. 
But it is not just increasing steadily, it is increasing at an accelerating rate. 
This suggests a rapidly growing trend in the number of computer-assisted 
proofs in recent years: while their absolute number remains low, more 
computer-assisted proofs are being published each year. Moreover, this 
effect outweighs the increasing number of preprints submitted, i.e. 
although the number of preprints submitted per year is also increasing, the 
proportion of computer-assisted proofs submitted per year is increasing 
even more. 

A similar picture emerges when looking at preprints classified as 
mathematics and, with a caveat, those classified as computer science. For 
both, the number of preprints reporting on computer-assisted proofs is 
not only increasing steadily, but at an accelerating rate. For mathematics, 
this effect outweighs the increasing number of preprints submitted (i.e., 
the number of computer-assisted proofs categorized as mathematics is 
increasing faster than the number of all submitted papers categorized as 
mathematics). This is not the case for computer science. While the 
number of preprints categorized as computer science is increasing, the 
number of computer-assisted proofs categorized as computer science is not 
increasing at the same rate. Unfortunately, the available data do not 
provide an answer as to why this is the case. It could be that other areas of 
computer science are receiving more attention, or that preprints reporting 
on computer-assisted proofs are nowadays more likely to be assigned only 
to their primary category (e.g. mathematics or eess), rather than also being 
assigned to computer science. 
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In any case, C2 is not supported by the empirical data. On the contrary, 
the data suggest that the number of computer-assisted proofs is increasing 
at an accelerating rate. 

S1	 Computer-assisted proofs are found in mathematical practice. 

Supporters defend S1 in response to C1, i.e. to express the expectation that 
computer-assisted proofs exist and are being advanced by mathematicians. 
As with C1, a distinction can be made between a strong and a weak 
reading. A strong reading would expect computer-assisted proofs to be 
found in a large number of publications (though perhaps not in the 
majority). A weaker reading would make no such assumption, but would 
simply expect to find a not insignificant, though perhaps not large, 
number of computer-assisted proofs.  25

Clearly, the empirical results do not support the strong reading, as the 
number of matches was found to be relatively low (0.1% for all categories, 
0.1% for mathematics, 0.3% for computer science). However, the results 
do support the weak reading. A total of 2.652 matches across all categories, 
and, although these figures cannot be directly compared because a single 
preprint can be assigned to several categories, 2.145 matches within 
computer science and 695 matches within mathematics, represent a small 
but significant proportion of the total. 

S2	 Over time, the number of computer-assisted proofs is rising. 

The supporter’s S2, like the critic’s C2, formulates an expectation about 
how the number of computer-assisted proofs will change over the years. 
While the critic, in my reconstruction, denies that the number has changed 
significantly, the supporter, perhaps pointing to technological and societal 
advances over the last 50 years, assumes that the number of computer-
assisted proofs is increasing. 

Indeed, S2 is well supported by the empirical evidence. Looking at 
preprints across all categories, we see that the number of matches is not 
only steadily increasing, but is increasing at an accelerating rate. In fact, it 
has increased faster than the total number of preprints submitted, i.e. more 
and more of the preprints submitted are reporting on computer-assisted 
proofs. A similar conclusion was reached when looking at preprints in the 
category mathematics. Within mathematics, too, the number of 

 I do not think that any supporter has seriously advanced the strong reading.25

Computer-Assisted Proofs	 	 22



computer-assisted proofs is increasing faster than the total number of 
preprints submitted. 

Where do we stand? What is the epistemological status of computer-
assisted proofs? The empirical findings I have reported suggest that while 
computer-assisted proofs are not the primary strategy that mathematicians 
use when working on a problem – they are probably not the second or 
third either – they do seem to have their place in the mathematical 
community, at least as far as that community is reflected in the preprints 
submitted to the arXiv. While the number of computer-assisted proofs is 
relatively small, it is increasing and, more interestingly, increasing at an 
accelerating rate. This finding seems to suggest that the epistemological 
problems raised by the critic may have been somewhat exaggerated. If the 
critic bases their argument against computer-assisted proofs on (EL), 
claiming that they are rejected by the mathematical community as evidence 
of their negative epistemic quality – framed in terms of the a priori/a 
posteriori distinction – the data indicate that computer-assisted proofs are 
no longer, or perhaps never were, rejected by the community. This tips the 
scale towards the supporter: while not entirely without problems, 
computer-assisted proofs do not seem to be epistemically lacking. 

I foresee at least four possible objections to this conclusion. First, one 
might object that the mathematical community is not epistemically well-
behaved. That is, contrary to (EL), the mathematical community’s 
acceptance or rejection of a method or proof does not provide evidence for 
its epistemic quality. On this view, the data I report would bear no 
relevance for the epistemic status of computer-assisted proofs. 

I have already touched on this kind of reasoning in the discussion of (EL) 
above. As I noted there, both critics and supporters seem to agree on (EL) 
by pointing to mathematicians who reject or support computational 
methods. So I do not think that giving up (EL) is a plausible move in the 
context of the literature I have reviewed here. Moreover, one might ask 
why one should care for computer-assisted proofs if not because of (EL). If 
one does not assume that the mathematical community is epistemically 
well-behaved, why should one want to make an epistemic distinction 
between ordinary and computer-assisted proofs to begin with? Notions 
like surveyability are discussed because some mathematicians are 
concerned about computer-assisted proofs. Without (EL), why should one 
try to recast these in epistemic terms? 
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The second objection accepts (EL), but objects to applying corpus-based 
methods to study whether the mathematical community accepts or rejects 
a method or proof. It can be motivated as follows: acceptance or rejection 
of a particular method by the mathematical community ultimately comes 
down to whether individual mathematicians accept or reject proofs using 
that method. This is not a simple binary decision, but a complex and 
gradual process involving various factors. Corpus-based tools are thought 
to be too coarse-grained to adequately measure this complexity. The 
objection is therefore methodological. It assumes that there is a gap 
between what is measured – the frequency of words or the number of 
preprints containing those words – and the complex feelings of the agents 
that make up the mathematical community.  

I think the objection is correct in identifying a potential gap between what 
is measured and scientific practice. But I also think it greatly exaggerates 
the gap, while underestimating what corpus-based tools are able to 
capture. First, note that there is always some sort of gap when applying 
empirical methods to a philosophical question. Even if one resorts to 
qualitative interviews, say, to study what mathematicians think about 
computer-assisted proofs, conducting and interpreting the interviews 
requires some sort of generalization to bridge the gap between what was 
measured (the individual responses) and the philosophical question (the 
mathematical practice). What matters is how this generalization is 
justified.  Second, studying mathematical publications and preprints 26

certainly is a justified way to study mathematical practice. If only because 
publication practices are part of mathematical practice, so that by studying 
the former one can (within certain limits) make justified generalizations 
about the latter (cf. also Lean et al., 2023).  27

The third objection I anticipate accepts (EL) and the use of corpus-based 
methods, but insists that the results I have reported above do not show 
enough to arrive at definitive conclusions about the epistemic status of 
computer-assisted proofs. There might be finer details in how the 
community, or individual mathematicians, think about computer-assisted 

 If interviews are used, the selection of interviewees, the catalogue of questions and the 26

coding of the responses must be justified. If corpus-based tools are used, one needs to 
justify why the corpus chosen is representative and why the keywords chosen are relevant 
for the underlying issue. As I have argued in section 3, the arXiv is representative of 
mathematical practice, and the keywords are indicative of computer-assisted proofs.

 This does not mean that other empirical methods should not also be used to study 27

what mathematicians think about computer-assisted proofs. On the contrary, using 
different methods might be advisable to cover different aspects of the phenomenon.
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proofs. Perhaps there are certain areas or contexts in which computer-
assisted proofs are more likely to be accepted, but others in which they are 
not. There might also be a distinction between a computer-assisted proof 
of a new theorem (as was the case with 4CT), and formal verifications of 
theorems that have already been proven in traditional ways. Additionally, 
there is probably a historical dimension to these questions, in so far as early 
computer-assisted proofs, like Appel and Haken’s proof of 4CT, are far 
more difficult to read than contemporary ones that are much more 
standardized. 

In response, I do agree that it is highly plausible that such subtle 
differences exist. Studying them would require more fine-grained analyses 
than I have presented here. Corpus-based tools could still be helpful. For 
example, the 2.652 matching preprints I have identified could be studied 
further to learn more about their authors, and about the inner-
mathematical fields in which computational methods are applied. 
However, I also want to point out that the question I have investigated 
here is far less complex than the objection suggests. What is the 
epistemological status of computer-assisted proofs? I have presented two 
views, critics and supporters, and argued that both are committed to 
empirical hypothesis about the number of publications reporting on 
computer-assisted proofs. I then tested these hypotheses and found little 
evidence to support critic’s claim. This does not mean that computer-
assisted proofs are without epistemic problems, but only that they do not 
seem to be rejected by the mathematical community in the way critic 
claims.  28

The last objection I would like to consider is the relatively small numbers 
of matches. Even if one agrees with my reasoning up to this point, one 
might still claim that the number of matching preprints I have identified, 
that is 2.652 matches across all categories (0.1%), and 2.145 matches 
within computer science (0.3%) plus 695 in mathematics (0.1%),  is 29

simply too low to claim that the mathematical community does not reject 
computer-assisted proofs. 

 To take up the alleged distinction between computer-assisted proofs and formal 28

verifications, the point is that the critic (as I have framed her) would want to insist that 
both are epistemically bad and therefore rejected by the mathematical community. My 
findings suggest that this is not the case.

 Note again that a single preprint can be assigned to more than one category. Therefore, 29

the total number always tends to be lower than the sum of the numbers in the individual 
categories.
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As I have argued above, I agree as far as the estimation claims C1 and S1 are 
concerned. The number of matches I found seems too low to pick one 
over the other. But I also found that the number of preprints reporting on 
computer-assisted proofs is increasing each year. Moreover, it is increasing 
at an accelerating rate, exceeding the increase in submissions (except in 
computer-science). This, as I have argued, is contrary to the assumption of 
the critics (cf. C2), whereas it is consistent with the assumption of the 
supporters (cf. S2). So although the absolute numbers are relatively low, I 
claim that their accelerating increase establishes that computer-assisted 
proofs are not rejected by the mathematical community. 

5. Summary 
What is the epistemological status of computer-assisted proofs? To answer 
this question, both critics and supporters rely on quotes from 
mathematicians who either criticize or support the use of computational 
methods. Critics argue that mathematicians who oppose computer-
assisted proofs have a legitimate concern because computer-assisted proofs 
are epistemically lacking. Supporters counter by pointing out that relevant 
experts accept computer-assisted proofs and that the epistemic arguments 
of the critics can be rejected. This stalemate can be resolved, I have argued, 
by empirical studies. I have presented a study that analyses all preprints 
submitted to the arXiv from 1986 to 2024 to count exactly how many 
preprints reporting on computer-assisted proofs have been published, and 
to investigate how this number changes over time. The results show that 
there is a small but significant number of computer-assisted proofs on the 
arXiv and, more importantly, that their number is increasing at an 
accelerating rate. While more and more preprints are submitted to the 
arXiv each year, my results suggest that the proportion reporting on 
computer-assisted proofs is increasing even faster. Overall, this tips the 
scales in favor of the supporters: while mathematicians may not exactly like 
computer-assisted proofs, the epistemic concerns of the critics may have 
been somewhat exaggerated. 

Zooming out, one might ask whether the stalemate is also due to a 
methodological difficulty. For example, Rota, a mathematician and strong 
critic of computational methods, has this to say: 
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[Appel and Haken’s] “proof” was the first verification of a major 
mathematical theorem by computer. Mathematicians have been 
ambivalent about such a verification. On the one hand, every 
mathematician professes to be satisfied to learn that the conjecture has 
been settled. On the other hand, the behavior of the community of 
mathematicians belies such a feeling of satisfaction. Indeed, if 
mathematicians had been satisfied with the computer verification of 
the four color conjecture, then no one would not have felt the need for 
further verifications. (Rota, 1997, p. 186) 

Methodologically, Rota makes generalizations about the mathematical 
community and his fellow mathematicians to support his critique. While 
these may have some prima facie plausibility, given that Rota is an eminent 
mathematician who may have some privileged insights, even eminent 
mathematicians can err when generalizing about their discipline (Hanna & 
Larvor, 2020). Rota’s view may be representative of a very particular 
community, but not so much of other communities.  But without 30

empirical research, there is no way to know. Empirical research on 
mathematical practices and communities is needed to produce the 
evidence that provides viable input to philosophical theorizing (Buldt et 
al., 2008; Aberdein & Inglis, 2019). And, as perhaps in the case of 
computer-assisted proofs, if done properly it can prevent bias in one 
direction or another. 

 As for Appel and Haken’s proof, as mentioned above, the experts who were actively 30

working on the 4CT at the time were by no means ambivalent, but accepted the proof as 
definitive.
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Appendix 
year total matches %

1986 1 0 0%
1988 1 0 0%
1989 6 0 0%
1990 26 0 0%
1991 353 0 0%
1992 3.190 0 0%
1993 6.729 0 0%
1994 10.078 0 0%
1995 13.006 1 0,01%
1996 15.872 1 0,01%
1997 19.610 1 0,01%
1998 24.170 1 0%
1999 27.700 0 0%
2000 30.670 8 0,03%
2001 33.140 8 0,02%
2002 36.107 4 0,01%
2003 39.392 11 0,03%
2004 43.714 10 0,02%
2005 46.881 14 0,03%
2006 50.314 27 0,05%
2007 55.752 21 0,04%
2008 58.810 26 0,04%
2009 64.071 34 0,05%
2010 70.288 34 0,05%
2011 76.602 62 0,08%
2012 84.374 61 0,07%
2013 92.875 84 0,09%
2014 97.590 99 0,1%
2015 105.130 102 0,1%
2016 113.440 120 0,11%
2017 123.781 150 0,12%
2018 140.377 172 0,12%
2019 155.917 191 0,12%
2020 178.275 235 0,13%
2021 181.599 272 0,15%
2022 185.987 280 0,15%
2023 209.223 275 0,13%
2024 243.662 348 0,14%

∑ 2.638.713 2.652 0,1%
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year math 
total

math 
matches

cs 
total

cs 
matches

eess 
total

eess 
matches

other 
total

other 
matches

1986 0 0 0 0 0 0 2 0

1988 0 0 0 0 0 0 1 0

1989 6 0 0 0 0 0 0 0

1990 24 0 2 0 0 0 0 0

1991 61 0 3 0 0 0 308 0

1992 358 0 1 0 0 0 3.356 0

1993 603 0 7 0 0 0 7.837 0

1994 948 0 251 0 0 0 11.926 0

1995 1.198 1 255 0 0 0 15.989 0

1996 1.419 1 237 0 0 0 19.436 0

1997 1.849 0 192 0 0 0 23.468 2

1998 2.697 0 334 1 0 0 27.051 0

1999 3.348 0 325 0 0 0 30.431 0

2000 4.096 1 511 7 0 0 31.992 0

2001 4.354 1 613 5 0 0 34.551 2

2002 5.637 2 702 1 0 0 36.692 1

2003 6.648 2 865 0 0 0 39.430 9

2004 8.352 5 1.022 1 0 0 42.359 4

2005 10.011 8 1.385 4 0 0 44.337 6

2006 11.996 3 1.898 12 0 0 46.114 13

2007 14.242 6 2.842 13 0 0 49.148 4

2008 15.518 6 3.645 20 0 0 50.851 2

2009 17.585 9 4.875 20 1 0 54.217 6

2010 21.172 12 7.585 25 3 0 61.589 4

2011 24.162 19 9.125 47 5 0 67.199 8

2012 27.245 14 12.335 52 6 0 72.298 6

2013 30.223 15 14.940 72 7 0 75.448 9

2014 32.103 27 16.312 83 4 0 77.397 11

2015 34.737 32 18.834 79 23 0 81.633 5

2016 36.395 38 23.712 83 36 0 85.007 8

2017 38.483 40 30.813 119 750 0 87.944 9

2018 40.034 31 41.950 144 3.677 2 98.102 15

2019 42.983 44 55.524 163 9.842 24 109.903 25

2020 46.100 48 71.423 204 15.706 28 120.318 25

2021 45.135 85 77.517 223 14.381 32 111.901 34

2022 45.410 74 82.108 235 15.837 32 111.266 20

2023 47.924 74 100.015 240 17.256 25 117.659 19

2024 51.949 97 125.425 292 19.511 27 127.055 24

∑ 675.005 695 707.583 2.145 97.045 170 1.974.215 271
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keyword matches %

acl2 97 3,66%
agda 188 7,09%

computer assisted 232 8,75%
computer-assisted 734 27,68%

coq 607 22,89%
hol 93 3,51%

idris 17 0,64%
isabelle 380 14,33%

lean 233 8,79%
metamath 21 0,79%

mizar 50 1,89%

∑ 2.652 100%
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